

Due Today:

Contextual Inquiry printout due now

Individual heuristic evaluation due online now

Example: Gesture Recognition

Omar Ali

Good feedback

- + Icons indicate gesture
 Highlight when detected
 Left/Right bit hard to
 distinguish
- + Directional swipes

Example: Drum Playing App

Benjamin Le

Creative application

Well thought out

Drums icons clear

Good mapping/layout

 $\underline{\text{http://www.youtube.com/watch?v=EXp7Ch6qyF8}}$

Assignment: Low Fidelity Prototype

Due Mar 7

Identify project mission statement

Create a low-fidelity paper prototype that supports 3 tasks

I easy, I moderate, I difficult task

Create a video showing your prototype:

How it supports the 3 tasks

Context in which is will be used (back story)

Your video must include narration!

Fitts' Law

$$T = a + b \log_2(D/S + 1)$$

a, b = constants (empirically derived)

D = distance S = size

ID is Index of Difficulty = $log_2(D/S+I)$

Models well-rehearsed selection task

T increases as the **distance** to the target increases

T decreases as the **size** of the target increases

Questions:

What (low-level) tasks are the users trying to accomplish with an input device?

How can we think about the space of possible input devices?

What interaction techniques are encouraged/discouraged by a particular device?

Important Tasks

Text Entry

Pointing/Marking

- Target acquisition
- Steering / positioning
- Freehand drawing
- Drawing lines
- Tracing and digitizing
- •

Difficulty: Text Entry

Still very hard on mobile devices

Keyboards (on-screen and thumb)
Full hand-writing recognition
Graffiti

EdgeWrite

ShapeWriter

Mobile Text Entry: Keypads

Multi-tap mappings

Multiple presses per letter

Ambiguity resolution

One press per letter, dictionary lookup

18

Mobile Text Entry: Keypads

Chording

Multiple keys pressed simultaneously

Number of combinations for n keys?

Twiddler2, HandyKey

19

Mobile Text Entry: Soft Keys Soft Keyboards Benefits? Drawbacks? To: stevejobs@apple. Cc/Bcc, From: brentsheets@somewhere... Subject: QWERTYUIOP ASDFGHJKL .?123 space @ return Mactoids.com

Graffiti – Unistroke Text Entry

ABCDETGhi²J'kLMNO P9RS²HUVWXYZ O1Z3'456789

What about Speech Recognition?

Dictation is faster than typing (~100 wpm)

What about Speech Recognition?

Dictation is faster than typing (~100 wpm), BUT:

Speech is different from written language: Speaking in well-formed, complete, print-ready sentences is cognitively challenging

High cost of correcting errors through speech channel alone

Social awkwardness?

Pointing Devices (cc) Flickr photo by Mike fj40

Device Abstraction

Click, DoubleClick, MouseUp, MouseDown, MouseMove ...

44

What is sensed? Table I. Physical Properties Used by Input Devices Linear Rotary Position Absolute Rotation ${\bf R}$ Relative Movement dP Delta rotation dRForce Absolute Force F Torque T Delta torque \mathbf{dT} Relative Delta force dFCard, S. K., Mackinlay, J. D., and Robertson, G. G. 1991. A morphological analysis of the design space of input devices. ACM Trans. Inf. Syst. 9, 2 (Apr. 1991), 99-122.

Other device properties:

Indirect vs. Direct

Direct: Input and output space are unified

C:D Ratio

For one unit of movement in physical space, how far does the cursor travel in display space?

Q:What is the C:D ratio for direct touch screen input?

Device Acquisition Time

Fitts' Law

Time T_{pos} to move the hand to target size S which is distance D away is given by:

$$T_{pos} = a + b log_2 (D/S + I)$$
Index of Difficulty (ID)

Only relative precision matters

Source: Landay, James. "Human Abilities". CS160 UC Berkeley

Fitts' Law

Time T_{pos} to move the hand to target size S which is distance D away is given by:

$$T_{pos} = a + b \log_2 (D/S + I)$$

Device Characteristics (bandwidth of human muscle group & of device)

a: start/stop time
b: speed

Source: Landay, James. "Human Abilities". CS160 UC Berkeley

Everything is best for something and worst for something else.
- Bill Buxton

3-State Model of Input (Buxton)

State	Description
0	Out Of Range: The device is not in its physical tracking range.
1	Tracking: Device motion moves only the cursor.
2	Dragging: Device motion moves objects on the screen.

(Table from Hinckley Reading)

