

Assigned: Ind. Heuristic Eval. (due Feb 22) Apply Nielsen's notes on Heuristic Evaluation to application of your choosing Example: BART Trip Planning Heuristic: Consistency and Standards Explanation: The interface offers inconsistent ways to change different trip options. While a dropdown box to choose departure time and a button to reverse stations are available on the main screen, the origin and destination stations cannot be changed on this screen. To change these options, the user must click on the "i" icon in the top bar which only becomes visible on mouse rollover). **Severity:** 3 = Major usability problem: important to fix, so should be given high priority. I rank this problem as major because it occurs frequently - every time the $\,$ user wants to change stations; and because it is persistent - there is no way for the user to change application behavior to put all controls on the same page.

Group Brainstorm (20 pts)

Mean 17 Stddev 1.57

Great job on producing ideas and illustrating them Need more targeted user groups!

Contextual Inquiry and Task Analysis

Due Feb 22

Find and interview 3 target users (not from class)

Analyze their tasks

Explain how your application addresses their needs

Compare to five closest existing applications

See wiki for details

Start now!

Finding participants will take time

We will not accept late group project assignments

Usability Heuristics

"Rules of thumb" describing features of usable systems

Can be used as design principles Can be used to evaluate a design

Example: Minimize users' memory load

Heuristic Evaluation

Developed by Jakob Nielsen (1994)

Can be performed on working UI or on sketches

Small set (3-5) of evaluators (experts) examine UI

Evaluators check compliance with usability heuristics
Different evaluators will find different problems
Evaluators only communicate afterwards to aggregate findings
Designers use violations to redesign/fix problems

Nielsen's Ten Heuristics

H2-I: Visibility of system status

H2-2: Match system and real world

H2-3: User control and freedom

H2-4: Consistency and standards

H2-5: Error prevention

H2-6: Recognition rather than recall

H2-7: Flexibility and efficiency of use

H2-8: Aesthetic and minimalist design

H2-9: Help users recognize, diagnose, recover from errors

H2-I0: Help and documentation

H2-2: Match System & World

Speak the users' language Follow real world conventions Pay attention to metaphors

Bad example: Mac desktop

H2-2: Match System & World

NEW CUSTOMER Office us your measurements Take or ask someone to help take your measurements, by following our easy instructions. It takes just 5 minutes! Send us your best fitting shirt* (go directly to cart) If you prefer not to take measurements, you can mail us your best fitting shirt. Our Master Tailor will take the necessary measurements and will return your shirt along with your order. *: Your shirt will be used for measurements only. We will not copy it. Visit our NYC showroom (go directly to cart) Contact us at contact@listerouge-paris.com to plan a private appointment at our New York showroom (Madison Ave & 40th St.). EXISTING CUSTOMER Your measurements are on file (go directly to cart) If your last order fits perfectly, we will make the new shirts with exactly the same measurements. If your measurements have changed Simply note your measurements changes compared to your previous shirts.

http://www.useit.com/alertbox/application-mistakes.html

Preventing Errors

Error types

Slips

User commits error during the execution of a correct plan.

Typos

Habitually answer "no" to a dialog box

Forget the mode the application is in

Mistakes

User correctly executes flawed mental plan

Ususally the result of a flawed mental model – harder to guard against

H2-6: Recognition over Recall

H2-8: Aesthetic and Minimalist Design | State | Control | Control

http://4sysops.com/wp-content/uploads/2006/04/Bulk_Rename_Utility.gif

H2-8: Aesthetic and Minimalist Design

Present information in natural order

Occam's razor

Remove or hide irrelevant or rarely needed information – They compete with important information on screen

Pro: Palm Pilot, iPhone

Against: Dynamic menus

Use windows frugally

Avoid complex window management

H2-8: Aesthetic and Minimalist Design

H2-10: Help and Documentation

Help should be:

- •Easy to search
- •Focused on the user's task
- •List concrete steps to carry out
- Not too long

Types of Help

Tutorial and/or getting started manuals

Presents the system conceptual model

Basis for successful explorations

Provides on-line tours and demos

Demonstrates basic features

Reference manuals

Designed with experts in mind

Reminders

Short reference cards, keyboard templates, tooltips...

Phases of Heuristic Eval. (1-2)

1) Pre-evaluation training

Provide the evaluator with domain knowledge if needed

2) Evaluation

Individuals evaluate interface then aggregate results

Compare interface elements with heuristics

Work in 2 passes

First pass: get a feel for flow and scope Second pass: focus on specific elements

Each evaluator produces list of problems

Explain why with reference to heuristic or other information Be specific and list each problem separately

Phases of Heuristic Eval. (3-4)

3) Severity rating

Establishes a ranking between problems

Cosmetic, minor, major and catastrophic

First rate individually, then as a group

4) Debriefing

Discuss outcome with design team

Suggest potential solutions

Assess how hard things are to fix

Examples

Typography uses mix of upper/lower case formats and fonts

Violates: Consistency and Standards (H2-4)

Problem: Slows users down

Fix: pick a single format for entire interface

Probably wouldn't be found by user testing

Severity Rating

Used to allocate resources to fix problems

Estimates of need for more usability efforts

Combination of Frequency, Impact and Persistence

Should be calculated after all evaluations are in

Should be done independently by all judges

Levels of Severity

- 0 don't agree that this is a usability problem
- I cosmetic problem
- 2 minor usability problem
- 3 major usability problem; important to fix
- 4 usability catastrophe; imperative to fix

Severity Ratings Example

I. [H2-4 Consistency] [Severity 3]

The interface used the string "Save" on the first screen for saving the user's file, but used the string "Write file" on the second screen. Users may be confused by this different terminology for the same function.

Debriefing

Conduct with evaluators, observers, and development team members

Discuss general characteristics of UI

Suggest improvements to address major usability problems

Development team rates how hard things are to fix

Make it a brainstorming session

Little criticism until end of session

Pros and Cons of
Heuristic Evaluation

HE vs. User Testing

HE is much faster

1-2 hours each evaluator vs. days-weeks

HE doesn't require interpreting user's actions

User testing is far more accurate

Takes into account actual users and tasks HE may miss problems & find "false positives"

Good to alternate between HE & user-based testing

Find different problems Don't waste participants

Why Multiple Evaluators?

Every evaluator doesn't find every problem Good evaluators find both easy & hard ones

Number of Evaluators

Single evaluator achieves poor results

Only finds 35% of usability problems

5 evaluators find ~ 75% of usability problems

Why not more evaluators???? 10? 20?

Adding evaluators costs more

Many evaluators won't find many more problems

But always depends on market for product:

popular products → high support cost for small bugs

Summary

Heuristic evaluation is a discount usability method

Have evaluators go through the UI twice

Ask them to see if it complies with heuristics Note where it doesn't and say why

Have evaluators independently rate severity

Combine the findings from 3 to 5 evaluators Discuss problems with design team

Cheaper alternative to user testing

Finds different problems, so good to alternate

Why Model Human Performance?

Why Model Human Performance?

To predict impact of new technology/interface

Apply model to predict effectiveness

Could build a simulator to evaluate user interface designs

Perceptual Processor

Physical store from our senses: sight, sound, touch, ...

Code directly based on sense used

Visual, audio, haptic, ... features

Selective

Spatial

Pre-attentive: color, direction...

Capacity of visual store

Example: 17 letters

Decay time for working memory: 200ms

Recoded for transfer to working memory

Progressive: I0ms/letter

How many 3's

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's

3330209905959595772564675050678904567 **3**

Visual Pop-Out: Color http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Perceptual Processor

Cycle time

Quantum experience: 100ms

Percept fusion

Frame rate necessary for movies to look continuous?

time for I frame < Tp (100 msec) -> 10 frame/sec.

Max. morse code rate can be similarly calculated

Perceptual causality

Two distinct stimuli can fuse if the first event appears to cause the other

Events must occur in the same cycle

Perception of Causality [Michotte 46]

Michotte demonstration I. What do you see? Most observers report that the red ball hit the blue ball. The blue ball moved "because the red ball hit it." Thus, the red ball is perceived to "cause" the red ball to move, even though the balls are nothing more than color disks on your screen that move according to a program.

http://cogweb.ucla.edu/Discourse/Narrative/Heider_45.html

Perception of Causality [Michotte 46]

Michotte demonstration I. What do you see? Most observers report that the red ball hit the blue ball. The blue ball moved "because the red ball hit it." Thus, the red ball is perceived to "cause" the red ball to move, even though the balls are nothing more than color disks on your screen that move according to a program.

http://cogweb.ucla.edu/Discourse/Narrative/Heider_45.html

Perceptual Processor

Cycle time

Quantum experience: 100ms

Causality

Working Memory

Access in chunks

Task dependent construct 7 +/- 2 (Miller)

Decay

Content dependant

I chunk 73 sec

3 chunks 7 sec

Attention span

Interruptions > decay time

Long Term Memory

Very large capacity

Semantic encoding

Associative access

Fast read: 70ms

Expensive write: 10s

Can also move from WM to LTM via rehearsal

Context at the time of acquisition key for retrieval

