<table>
<thead>
<tr>
<th>Due Today</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo-Fi Prototype Test Report (now)</td>
<td></td>
</tr>
</tbody>
</table>
New Assignment

Interactive Prototype: Make your app real!

Functional, interactive app written for Kinect

Due on April 9th
Presentations on April 9, April 11

Data Analysis
For Wed: Bubble Cursor Experiment

Effect Sizes: Time

Normal vs. Bubble cursor at target size 10:
1129ms vs. 796ms: Bubble cursor 30% faster

Normal vs. Bubble cursor at target size 30:
803ms vs. 723ms: Bubble cursor 10% faster

Target size for normal cursor:
1129ms vs 803ms: Larger targets 29% faster

Target size for Bubble cursor:
796ms vs. 723ms: Larger targets 9% faster

Bubble Cursor Online Experiment
UC Berkeley CS160

In this short experiment, you will be asked to click on a sequence of targets on screen. You will do this both with a regular mouse cursor and with a different type of cursor that dynamically expands in size to always select the closest target. This Bubble Cursor was introduced by Tovi Grossman and Ravin Balakrishnan at CHI 2005.

This experiment does not work in Google Chrome. Firefox is preferred. Safari might work.

Warm-Up

First, get familiar with the two tasks. Here is the normal cursor. Your job is to click on the red targets - quickly but accurately. Click on a few of them.
Effect Sizes: Error

Normal vs. Bubble cursor, target size 10:
1.67 vs. 0.24 Errors per 20 trials: 85% fewer errors! (6.95x)

Normal vs. Bubble cursor, target size 30:
0.90 vs. 0.02 Errors per 20 trials: 98% fewer errors!

Interactions
Interactions

Hypothesis testing
Hypothesis: Manipulation of IV effects DV in some way
Null hypothesis: Manipulation of IV has no effect on DV
Null hypothesis assumed true unless statistics allow us to reject it

Statistical significance (p value)
Likelihood that results are due to chance variation
p < 0.05 usually considered significant (Sometimes p < 0.01)
Means that < 5% chance that null hypothesis is true

Statistical tests
T-test (1 factor, 2 levels)
Correlation
ANOVA (1 factor, > 2 levels, multiple factors)
MANOVA (> 1 dependent variable)
T-test

Compare means of 2 groups

Null hypothesis: No difference between means

Assumptions

Samples are normally distributed

Very robust in practice

Population variances are equal (between subjects tests)

Reasonably robust for differing variances

Individual observations in samples are independent

Important!

Correlation

Measure extent to which two variables are related

Does not imply cause and effect

Example: Ice cream eating and drowning

Need a large enough sample size

Regression

Compute the “best fit”

linear

logistic

...
ANOVA

Single factor analysis of variance (ANOVA)
Compare means for 3 or more levels of a single independent variable

Multi-Way Analysis of variance (n-Way ANOVA)
Compare more than one independent variable
Can find interactions between independent variables

Repeated measures analysis of variance (RM-ANOVA)
Use when > 1 observation per subject (within subjects expt.)

Multi-variate analysis of variance (MANOVA)
Compare between more than one dependent var.

ANOVA tests whether means differ, but does not tell us which means differ – for this we must perform pairwise t-tests

Which should we use for the menu selection example?

Our Example (Time)

Two-Way ANOVA (Cursor, Size) for time:
Main effect for cursor
F(1,1696) = 264.1, p<0.001 is statistically significant

Main effect for size
F(1,1696)=246.7, p<0.001 is statistically significant

Interaction cursor x size
F(1,1696)=92.2, p<0.001 is statistically significant
Our Example (Time)

Still need to run pairwise T-tests

Bubble fixed, Size varying
T(858)=22.683, p<0.001
Time at size 10 significantly differs from time at size 30

Normal fixed, Size varying
T(838)=252.95, p<0.001
Time at size 10 significantly differs from time at size 30

Size10 fixed, Cursor varying
T(838)=264.72, p<0.001
Time with bubble significantly differs from time with normal

Size30 fixed, Cursor varying
T(858)=27.11, p<0.001
Time with bubble significantly differs from time with normal
Our Example (Errors)

Two-Way ANOVA (Cursor, Size) for errors:

Main effect for cursor
F(1,81) = 21.0, p<0.001 is statistically significant.

Main effect for size
F(1,81)=246.7, p=0.11 is not statistically significant.

Interaction cursor x size
F(1,81)=92.2, p=0.06 is not statistically significant.

Still need to run pairwise T-tests

Bubble fixed, Size varying
T(41)=0.19, p=0.66
Errors at size 10 not significantly different from errors at size 30

Normal fixed, Size varying
T(40)=3.56, p=0.066
Errors at size 10 not significantly different from errors at size 30

Size10 fixed, Cursor varying
T(40)=16.98, p<0.001
Errors with bubble significantly differs from errors with normal

Size30 fixed, Cursor varying
T(41)=4.65, p=0.037
Errors with bubble significantly differs from errors with normal
What does $p>0.05$ mean?

No statistically significant difference (at 5% level)

Are the two conditions thus equivalent?

NO! We DID observe differences.

But can’t be sure they are not due to chance.
Confidence Intervals

95% Confidence Interval: The range of values in which we’re 95% sure the true population mean falls. Calculate with the help of the standard error SE.

Standard Deviation: measures variability of individual data points.

Standard Error: measures variability of means

\[
SE = \frac{SD}{\sqrt{N}}
\]

\[
95\%CI = M \pm 1.96 \times SE
\]
Draw Conclusions

What is the scope of the finding?
Are there other parameters at play?
Internal validity
Does the experiment reflect real use?
External validity

Summary

Quantitative evaluations
Repeatable, reliable evaluation of interface elements
To control properly, usually limited to low-level issues
Menu selection method A faster than method B

Pros/Cons
Objective measurements
Good internal validity → repeatability
But, real-world implications may be difficult to foresee
Significant results doesn’t imply real-world importance
3.05s versus 3.00s for menu selection
Midterm Review

Midterm on 3/14

In class. 75 minutes
Closed book & notes

Test is long - so be strategic
1st pass: Read through entire test, give immediate answers
2nd pass: Go back, answer questions requiring more time

Extra Office Hours
Tue 3/13 11am-noon, 3-4pm (405 Soda Hall)
Tue 3/13 2-3pm (BiD)
Interface Design Cycle

Evaluate

Prototype

Design

Observe existing practices

Create scenarios of actual use

Create models to gain insight into work processes
Rapid Prototyping

Build a mock-up of design (or more!)

Low fidelity techniques
Paper sketches
Cut, copy, paste
Video segments

Interactive prototyping tools
HTML, Flash, Javascript, Visual Basic, C#, etc.

UI builders
Interface Builder, Visual Studio, NetBeans

Evaluation

Evaluate analytically (no users)

Test with real target users

Low-cost techniques
expert evaluation
walkthroughs

Higher cost
Controlled usability study
Comparison

Focus differs
WF has no feedback
High cost of fixing errors: increases by 10x at each stage
Iterative design finds problems earlier
True for modern web applications?

IDEO’s Brainstorming Rules

1. Sharpen the Focus
2. Playful Rules
3. Number your Ideas
4. Build and Jump
5. The Space Remembers
6. Stretch Your Mental Muscles
7. Get Physical

Aim for quantity
Hope for quality
Task Analysis Questions

1. Who is going to use system?
2. What tasks do they now perform?
3. What tasks are desired?
4. How are the tasks learned?
5. Where are the tasks performed?
6. What’s the relationship between user & data?
7. What other tools does the user have?
8. How do users communicate with each other?
9. How often are the tasks performed?
10. What are the time constraints on the tasks?
11. What happens when things go wrong?

Goals of Contextual Inquiry

Method:
“Go where the customer works, observe the customer as she works, and talk to the customer about their work” [Holtzblatt]

Goals:
Get inside the user’s head
See their tasks the way they do
A middle ground between pure observation and pure interview
Guideline: Master-Apprentice Model

Allows user to teach us what they do
- Skill knowledge is usually tacit (can’t put it in books)
- Sometimes literal apprenticeship is best

Matsushita Home Bakery – First automatic bread maker to have twist/stretch motion [Nonaka 95]

Principles of Contextual Inquiry

1. Context
2. Partnership
3. Interpretation
4. Focus
Personas (from Cooper)

“Hypothetical Archetypes”
Archetype: (American Heritage)
An original model or type after which other similar things are patterned; a prototype
An ideal example of a type; quintessence

A precise description of user in terms
Capabilities, inclinations, background
Goals (not tasks)

Why Personas?

It’s hard to reason about users in aggregate, and impossible to please everyone.

General users have too many conflicting goals.
“… the term **affordance** refers to the **perceived** and **actual** properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used.

Some affordances obvious
- Knobs afford turning
- Buttons afford pushing
- Glass can be seen through

Some affordances learned
- Glass breaks easily

The Design of Everyday Things.
Don Norman

Review Conceptual Models

Designers model may not match user’s model

Users get model from experience & usage

Users only work with system image, not with designer

What if the two models don’t match?
1. Make Controls Visible

2. Make Sure Mapping is Clear

Mapping: Relationship between controls and their result

Mercedes S500 Car Seat Controller
3. Provide Feedback

People press >> 1 time
Unclear if system has registered the button press

Action Cycle

Goals
- Execution
 - Intention to act
 - Sequence of actions
 - Execution of actions
- Evaluation
 - Evaluation of interpretations
 - Interpreting the perception
 - Perceiving the state of the world

The World

start here
Direct Manipulation

An interface that behaves as though the interaction was with a real-world object rather than with an abstract system

Central ideas

Visibility of the objects of interest
Rapid, reversible, incremental actions
Manipulation by pointing and moving
Immediate and continuous display of results

Gulfs of Execution & Evaluation

Mental Model

Physical System

Real World
Modes: Definition

The same user actions have different effects in different situations.

Examples?
Human Info. Processor
Processors:
Perceptual
Cognitive
Motor
Memory:
Working memory
Long-term memory
Unified model
Probably inaccurate
Predicts perf. well
Very influential

Perceptual Processor

Cycle time
Quantum experience: 100ms
Percept fusion
Working Memory

Access in chunks
Task dependent construct
7 +/- 2 (Miller)

Decay
Content dependant
1 chunk 73 sec
3 chunks 7 sec

Attention span
Interruptions > decay time

Motor Processor

Receive input from the cognitive processor
Execute motor programs
Pianist: up to 16 finger movements per second
Point of no-return for muscle action
Power Law of Practice

Task time on the nth trial follows a power law

\[T_n = T_1 n^{-a} + c \]

You get faster the more times you do something!
Fitts’ Law

\[T = a + b \log_2(D/S + 1) \]

\(a, b \) = constants (empirically derived)
\(D \) = distance
\(S \) = size

ID is Index of Difficulty = \(\log_2(D/S + 1) \)

Models well-rehearsed selection task
\(T \) increases as the **distance** to the target increases
\(T \) decreases as the **size** of the target increases

Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

Same ID → Same Difficulty
Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

Smaller ID \rightarrow Easier

Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

Larger ID \rightarrow Harder
3-State Model of Input (Buxton)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out Of Range: The device is not in its physical tracking range.</td>
</tr>
<tr>
<td>1</td>
<td>Tracking: Device motion moves only the cursor.</td>
</tr>
<tr>
<td>2</td>
<td>Dragging: Device motion moves objects on the screen.</td>
</tr>
</tbody>
</table>

(Table from Hinckley Reading)

Mouse

(Figure from Hinckley Reading)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out Of Range: The device is not in its physical tracking range.</td>
</tr>
<tr>
<td>1</td>
<td>Tracking: Device motion moves only the cursor.</td>
</tr>
<tr>
<td>2</td>
<td>Dragging: Device motion moves objects on the screen.</td>
</tr>
</tbody>
</table>
Prototyping

Purposes
- Understand Existing Experience
- "Inquiring Actions"
- Communicate
- Explore
- Experiment
- Validate
- Anchor Discussion
- Persuade

Fidelity in Prototyping

Fidelity refers to the level of detail

High fidelity.
Prototypes look like the final product

Low fidelity.
Artists renditions with many details missing
Paper Prototypes are low-fidelity.
What about software?
Hi-Fi Disadvantages

Distort perceptions of the tester
Formal representation indicates “finished” nature
People comment on color, fonts, and alignment
Discourages major changes
Testers don’t want to change a “finished” design
Sunk-cost reasoning: Designers don’t want to lose effort put into creating hi-fi design

Engineering Interfaces
User Interface Components

Each component is an object with
- **Bounding box**
- **Paint method for drawing itself**
 Drawn in the component’s coordinate system
- **Callbacks to process input events**
 Mouse clicks, typed keys

Java:
```java
public void paint(Graphics g) {
    g.fillRect(...); // interior
    g.drawString(...); // label
    g.drawRect(...); // outline
}
```

Cocoa:
```java
(void)drawRect:(NSRect)rect
```

Layout: Containment Hierarchy

![Diagram showing containment hierarchy of UI components: Window, Panel, Label, TextArea, Button]
Anatomy of an Event

Encapsulates info needed for handlers to react to input

- Event Type (mouse moved, key down, etc)
- Event Source (the input component)
- Timestamp (when did event occur)
- Modifiers (Ctrl, Shift, Alt, etc)

Event Content

- Mouse: x,y coordinates, button pressed, # clicks
- Keyboard: which key was pressed

Event Dispatch Loop

- Event Queue: Queue of input events
- Event Loop (runs in dedicated thread)
 - Remove next event from queue
 - Determine event type
 - Find proper component(s)
 - Invoke callbacks on components
 - Repeat, or wait until event arrives
- Component
 - Invoked callback method
 - Update application state
 - Request repaint, if needed

Mouse moved (t₀, x, y)
Model-View-Controller

OO Architecture for interactive applications
introduced by Smalltalk developers at PARC ca. 1983

Why MVC?

Combining MVC into one class will not scale
model may have more than one view
each is different and needs update when model changes

Separation eases maintenance and extensibility
easy to add a new view later
model info can be extended, but old views still work
can change a view later, e.g., draw shapes in 3D
flexibility of changing input handling when using separate controllers
Changing the Display

Erase and redraw
using background color to erase fails
drawing shape in new position loses ordering

Better:

Move in model and then redraw view
change position of shapes in model
model keeps shapes in a desired order
tell all views to redraw themselves in order

slow for large / complex drawings
flashing! (can solve with double buffering)

Damage / Redraw Method

View informs windowing system of areas that are damaged
does not redraw them right away…

Windowing system
batches updates
clips them to visible portions of window

Next time waiting for input
windowing system calls Repaint() method
passes region that needs to be updated
What is a thread?

A **thread** is a **partial virtual machine**. Each thread has its own stack (and local variables) but shares its heap with other threads in the same application.

Threads can be independently scheduled by the OS/VM.

```cpp
for (i=0; i<n; i++)
{
    tmp = A[i];
    A[i] = B[i];
    B[i] = tmp;
}
```

Why use multithreading for UIs?

Not all code can complete quickly inside an event handler. Examples?
Updating the UI from another thread

All common UI frameworks have a single UI thread
You are only allowed to modify the UI from the main thread.

Two fundamental rules:
Do not block the UI thread
Background threads they must not modify the UI.

Solution: When worker thread completes, request update back in the UI thread.

How to properly update the UI

Almost all GUI frameworks offer some convenient mechanism to notify the main thread from another thread.

Android has at least three such mechanisms:
1. Call View.post(Runnable) from worker thread
2. Subclass AsyncTask – creates threads behind the scenes
3. Send messages in one thread with Handler: sendMessage() – message is received in another thread (like IPC)
Handler.sendMessage Example

Main thread

Handle event
Handle event
Handle event
Handle event
handleMessage()
update GUI

Helper thread

Start new thread

Long computation

 sendMessage("done")

Message queue

Usability Testing Methods
Genres of assessment

Automated Usability measures computed by software

Inspection Based on skills, and experience of evaluators

Formal Models and formulas to calculate measures

Empirical Usability assessed by testing with real users

Usability Heuristics

“Rules of thumb” describing features of usable systems
Can be used as design principles
Can be used to evaluate a design

Example: Minimize users’ memory load
Nielsen’s Ten Heuristics

H2-1: Visibility of system status
H2-2: Match system and real world
H2-3: User control and freedom
H2-4: Consistency and standards
H2-5: Error prevention
H2-6: Recognition rather than recall
H2-7: Flexibility and efficiency of use
H2-8: Aesthetic and minimalist design
H2-9: Help users recognize, diagnose, recover from errors
H2-10: Help and documentation

Phases of Heuristic Eval. (1-2)

1) Pre-evaluation training
Provide the evaluator with domain knowledge if needed

2) Evaluation
Individuals evaluate interface then aggregate results
Compare interface elements with heuristics

Work in 2 passes
First pass: get a feel for flow and scope
Second pass: focus on specific elements

Each evaluator produces list of problems
Explain why with reference to heuristic or other information
Be specific and list each problem separately
Phases of Heuristic Eval. (3-4)

3) Severity rating
Establishes a ranking between problems
Cosmetic, minor, major and catastrophic
First rate individually, then as a group

4) Debriefing
Discuss outcome with design team
Suggest potential solutions
Assess how hard things are to fix

Number of Evaluators

Single evaluator achieves poor results
Only finds 35% of usability problems
5 evaluators find ~ 75% of usability problems
Why not more evaluators???? 10? 20?
Adding evaluators costs more
Many evaluators won’t find many more problems

But always depends on market for product:
popular products → high support cost for small bugs
Steps in Designing an Experiment

1. State a lucid, testable hypothesis
2. Identify variables
 (independent, dependent, control, random)
3. Design the experimental protocol
4. Choose user population
5. Apply for human subjects protocol review
6. Run pilot studies
7. Run the experiment
8. Perform statistical analysis
9. Draw conclusions

Experiment Design

Testable hypothesis
Precise statement of expected outcome

Independent variables (factors)
Attributes we manipulate/vary in each condition
Levels – values for independent variables

Dependent variables (response variables)
Outcome of experiment (measurements)
Usually measure user performance
Experiment Design

Control variables
Attributes that will be fixed throughout experiment
Confound – attribute that varied and was not accounted for
Problem: Confound rather than IV could have caused change in DVs
Confounds make it difficult/impossible to draw conclusions

Random variables
Attributes that are randomly sampled
Increases generalizability

Common Metrics in HCI

Performance metrics:
- Task success (binary or multi-level)
- Task completion time
- Errors (slips, mistakes) per task
- Efficiency (cognitive & physical effort)
- Learnability

Satisfaction metrics:
- Self-report on ease of use, frustration, etc.
Goals

Internal validity
Manipulation of IV is cause of change in DV
Requires eliminating confounding variables (turn them into IVs or RVs)
Requires that experiment is replicable

External validity
Results are generalizable to other experimental settings
Ecological validity – results generalizable to real-world settings

Confidence in results
Statistics

Between vs. Within Subjects

Between subjects
Each participant uses one condition
+/- Participants cannot compare conditions
+ Can collect more data for a given condition
- Need more participants

Within subjects
All participants try all conditions
+ Compare one person across conditions to isolate effects of individual diffs
+ Requires fewer participants
- Fatigue effects
- Bias due to ordering/learning effects
HE vs. User Testing

HE is much faster
1-2 hours each evaluator vs. days-weeks

HE doesn't require interpreting user's actions

User testing is far more accurate
Takes into account actual users and tasks
HE may miss problems & find “false positives”

Good to alternate between HE & user-based testing
Find different problems
Don't waste participants

The Three Belmont Principles

Respect for Persons
Have a meaningful consent process: give information, and let prospective subjects freely chose to participate

Beneficence
Minimize the risk of harm to subjects, maximize potential benefits

Justice
Use fair procedures to select subjects
(balance burdens & benefits)

To ensure adherence to principles, most schools require Institutional Review Board approval of research involving human subjects.
Descriptive Statistics

Continuous data:
Central tendency
mean, median, mode

Dispersion
Range (max-min)
Standard deviation

Shape of distribution
Skew, Kurtosis

Categorical data:
Frequency distributions

\[
\mu = \frac{\sum_{i=1}^{N} X_i}{N}
\]

\[
\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}
\]

Example of Interactions

Multiple IVs effect DV non-additively
Change in time due to leadership differs with changes in group size
Independent variables do interact

[Graph showing the interaction between group size and leadership on problem solving time]

[from Martin 04]
Are the Results Meaningful?

Hypothesis testing
Hypothesis: Manipulation of IV effects DV in some way
Null hypothesis: Manipulation of IV has no effect on DV
Null hypothesis assumed true unless statistics allow us to reject it

Statistical significance (p value)
Likelihood that results are due to chance variation
\(p < 0.05 \) usually considered significant (Sometimes \(p < 0.01 \))
Means that < 5% chance that null hypothesis is true

Statistical tests
T-test (1 factor, 2 levels)
Correlation
ANOVA (1 factor, > 2 levels, multiple factors)
MANOVA (> 1 dependent variable)

What does \(p > 0.05 \) mean?

No statistically significant difference (at 5% level)
Are the two conditions thus equivalent?
NO! We DID observe differences.
But can’t be sure they are not due to chance.
Summary

Quantitative evaluations
Repeatable, reliable evaluation of interface elements
To control properly, usually limited to low-level issues
Menu selection method A faster than method B

Pros/Cons

Objective measurements
Good internal validity \Rightarrow repeatability
But, real-world implications may be difficult to foresee
Significant results doesn't imply real-world importance
3.05s versus 3.00s for menu selection