

Contextual Inquiry and Task Analysis **Due Feb 22** Find and interview 3 target users (not from class) Analyze their tasks Explain how your application addresses their needs Compare to five closest existing applications See wiki for details **Start now!** Finding participants will take time We will not accept late group project assignments

Cognitive Processor	
Page 70 of Card Moran and Newell	
Clocks starts when 2 nd letter is flashed Move 2 nd symbol into visual store WM	
	Т_р
Recognize the symbol as codes	+T c
Classify the codes as letters	
Match the fact that they are both letters	+T_c +T_c
Initiate motor response	+T_c
Process motor command	+T_m
Approx 450 (180-980) ms	

Schedule			
Paper			
Page			
Back			
Change			
Home			

Recognition over Recall

Recall

Info reproduced from memory

Recognition

Presentation of info helps retrieve info (helps remember it was seen before) Easier because of cues to retrieval

We want to design UIs that rely on recognition!

Recognition		
Grouchy Sneezy Smiley Sleepy Pop Grumpy Cheerful Dopey Bashful Wheezy Doc Lazy Happy Nifty		

Recogniti	on	
Grouchy Sneezy Smiley Sleepy		
Pop Grumpy Cheerful		
Dopey Bashful Wheezy Doc		
Lazy Happy Nifty		

Facilitating Retrieval: Cues

Any stimulus that improves retrieval

Example: giving hints Other examples in software?

icons, labels, menu names, etc.

Anything related to

Item or situation where it was learned

Summary

Model human processor

5 parts

Perceptual processor Working memory Long term memory Cognitive processor

Motor processor

May not be biologically accurate

But ...

Provides rough estimate of performance Can help us compare and evaluate interfaces

Interfaces should both aid and exploit human capabilities

Stages of Skill Acquisition Example: Using a manual transmission Cognitive lever to right Verbal representation of knowledge 9 1 Clutch down 1 Shift lever fr Shift I Associative Early practice 2 3 1 Proceduralization Form of chunking Middle practice -2 4 5 Autonomous Late practice -2 3 4 5 6 7) More and more automated Faster and faster No cognitive involvement Difficult to describe what to do

Fitts' L	_aw		

Fitts' Law $T = a + b \log_2(D/S + 1)$ a,b = constants (empirically derived) D = distance S = sizeID is Index of Difficulty = log_2(D/S+1)
Models well-rehearsed selection task T increases as the distance to the target increases T decreases as the size of the target increases

Summary

Decision Making and Learning

Time to make decisions depends on number of options

Choosing a movie at Blockbuster

Learning follows a power law

You get faster as you practice

Fitts' Law

Models movement time to select target Time depends on distance and size of target

Input	Devices		

Questions:

What (low-level) tasks are the users trying to accomplish with an input device?

How can we think about the space of possible input devices?

What interaction techniques are encouraged/ discouraged by a particular device?

