
3/5/12	

1	

CS160: User Interface Design	

Threads, Usability Testing 03/05/12

Berkeley
U N I V E R S I T Y O F C A L I F O R N I A

h(p://www.youtube.com/watch?feature=player_embedded&v=16GiO8EEVpE	

3/5/12	

2	

Assignments	

Due Today:���
Group Video Prototype	

	

New Assignment:���
Test Low-Fi Prototype with 3 users. You have 1 week
– make it short and sweet	

Today 3/5: ���
Threads & Designing Usability Studies	

	

Wednesday 3/7: ���
Statistics & Analyzing Study Data	

	

Monday 3/12: ���
Midterm Review	

Due: Lo-fi test with three users	

	

Wednesday 3/14: ���
In-class Midterm	

Plan Through Midterm	

3/5/12	

3	

Midterm on 3/14	

In class. 75 minutes.	

Closed book & notes.	

Review on Monday 3/12.	

If you are registered with the DSP office and have
special needs, we need to see your letter by this
Wednesday, 3/7, 1pm to make accommodations.	

Threading in User Interfaces	

3/5/12	

4	

What is a thread?	

A thread is a partial
virtual machine.	

Each thread has its own
stack (and local variables)
but shares its heap with
other threads in the same
application. 	

	

Threads can be
independently scheduled
by the OS/VM.	

for (i=0; i<n; i++)
{
 tmp = A[i];
 A[i] = B[i];
 B[i] = tmp;
}

Thread1	

 Thread2	

Threads vs. Processes	

A process is a complete virtual machine
with its own stack and heap.	

	

Threads share memory – processes don’t.	

Threads can communicate through shared memory,
processes need other mechanisms ���
(IPC = inter-process communication).	

3/5/12	

5	

Pros and Cons	

Why use threads?	

Useful model of concurrent execution, both on single
processors (time-division multiplexing) and on multi
processor/multi-core systems	

Threads are relatively cheap to create, versatile because of
shared memory	

Why wouldn’t one use threads?	

Complicated programming model. Multithreaded
programming is one of the biggest productivity killers of all
time	

(locks, semaphores, monitors, mutexes, signals, spawn, fork,
join,…)	

	

	

“After a long and careful
analysis the results are clear:
11 out of 10 people can't
handle threads.”	

 — Todd Hoff 	

3/5/12	

6	

Why use multithreading for UIs?	

Interactive programs need to respond quickly to
user input. Direct manipulation assumes that objects
onscreen respond to user’s touch/cursor.	

Why use multithreading for UIs?	

Not all code can complete quickly inside an event
handler. Examples?	

Network access	

File and Database IO	

Simulation	

We need to decouple code for long-running
computations from code for event handling and
screen updates!	

3/5/12	

7	

Android Demo: Long-running Task	

btnStart.setOnClickListener(
new OnClickListener() {

 public void onClick(View arg0) {

 // start long computation
 sleep(60000);
 // update UI when done
 txtResult.
 setText("Done.");
});

Android Demo: Long-running Task	

btnStart.setOnClickListener(
new OnClickListener() {

 public void onClick(View arg0) {

 // start long computation
 Thread.sleep(60000);
 // update UI when done
 txtResult.
 setText("Done.");
});

3/5/12	

8	

Event Dispatch Loop	

Event Queue	

•  Queue of input events	

Event Loop (runs in dedicated thread)	

•  Remove next event from queue	

•  Determine event type	

•  Find proper component(s)	

•  Invoke callbacks on components	

•  Repeat, or wait until event arrives	

Component	

•  Invoked callback method: ���
 ….compute…. ���
 …compute…	

•  Update application state	

•  Request repaint, if needed	

Mouse moved (t0,x,y)

Long-running operation	

Stopped the event loop!	

3/5/12	

9	

Android Demo with Threads	

btnStart.setOnClickListener(
new OnClickListener() {

 public void onClick(View v) {

 new Thread(new Runnable() {

 public void run() {

 //start long computation
 Thread.sleep(10000);
 // update UI when done
 txtResult.setText("Done.");
 }}).start(); //start new thread
}});

android.view.ViewRoot$
CalledFromWrongThreadException:

Only the original thread that
created a view hierarchy can
touch its views.

3/5/12	

10	

Event Dispatch Loop	

Event Queue	

•  Queue of input events	

Event Loop (runs in dedicated thread)	

•  Remove next event from queue	

•  Determine event type	

•  Find proper component(s)	

•  Invoke callbacks on components	

•  Repeat, or wait until event arrives	

Component	

•  Invoked callback method	

•  Update application state	

•  Request repaint, if needed	

Mouse moved (t0,x,y)

Launch Thread	

	

…Compute…	

	

Update app state	

Updating the UI from another thread	

All common UI frameworks have a single UI thread	

You are only allowed to modify the UI from the main thread.	

	

Two fundamental rules:	

Do not block the UI thread	

Background threads must not modify the UI	

	

Solution: When worker thread completes, request
update back in the UI thread.	

3/5/12	

11	

How to properly update the UI	

Almost all GUI frameworks offer mechanism to
notify main thread from another thread	

	

Notification commands are framework dependent	

Handler.sendMessage Example	

Main thread	

tim
e	

Helper thread	

Long ���
computation	

.	

.	

.	

	

Handle event	

Handle event	

 btn.OnClick()	

	

Start new thread	

Message queue	

Handle event	

Handle event	

Handle event	

	

handleMessage()	

 update GUI	

sendMessage(“done”)	

3/5/12	

12	

Android Code: Activity	

	

 	

	

public class ThreadDemo extends Activity {	

final Handler handler = new Handler() {	

 public void handleMessage (Message msg) {	

 // update UI 	

 txtResult.setText((String)msg.obj);	

 }	

};	

Android Code: Event Handler	

	

 	

	

public void onClick(View arg0) {	

	

new Thread(new Runnable() {	

	

 	

public void run() {	

	

 	

 	

// long computation…	

	

 	

	

 	

	

	

 	

 	

Message msg = new Message();	

	

 	

 	

msg.obj = "Done.";	

	

 	

 	

handler.sendMessage(msg);	

	

}}).start();	

}	

3/5/12	

13	

Usability Testing Methods	

3/5/12	

14	

Iterative Design	

Design	

Prototype	

Evaluate	

Brainstorming	

Task analysis	

Contextual inquiry	

Low-fi, paper	

Low-fi testing,	

Qualitative eval	

Quantitative eval	

Genres of assessment	

Automated	

 Usability measures computed by software���
	

Inspection	

 Based on skills, and experience of evaluators	

Formal	

 Models and formulas to calculate measures���
	

Empirical	

 Usability assessed by testing with real users���
	

3/5/12	

15	

Empirical Testing is Costly	

User studies are very expensive – you need to
schedule (and normally pay) many subjects.	

	

User studies may take many hours of the evaluation
team’s time. 	

	

A user test can easily cost $10k’s 	

	

“Discount Usability” Techniques	

Cheap	

No special labs or equipment needed	

The more careful you are, the better it gets	

	

Fast	

On order of 1 day to apply	

(Standard usability testing may take a week)	

	

Easy to use	

Can be taught in 2-4 hours	

	

3/5/12	

16	

“Discount Usability” Techniques	

Heuristic Evaluation	

Assess interface based on a predetermined list of criteria	

	

Cognitive Walkthroughs	

Put yourself in the shoes of a user	

Like a code walkthrough 	

	

Other, non-inspection techniques are on the rise	

e.g., online remote experiments with Mechanical Turk	

Cognitive Walkthrough	

Given an interface prototype or specification, need:	

•  Write detailed task with a concrete goal, motivated by a

scenario	

•  Write action sequence required to complete the task	

Ask the following questions for each step:	

•  Will the users know what to do?	

•  Will the user notice that the correct action is available?	

•  Will the user interpret the application feedback correctly?	

Record: what would cause problems, and why?	

	

	

From: Preece, Rogers, Sharp – Interaction Design

3/5/12	

17	

Empirical Assessment: Qualitative	

Qualitative: What we’ve been doing so far	

Contextual Inquiry: try to understand user’s tasks and
conceptual model	

Usability Studies: look for critical incidents in interface	

	

Qualitative methods help us:	

Understand what is going on	

Look for problems	

Roughly evaluate usability of interface	

Empirical: Quantitative Studies	

Quantitative	

Use to reliably measure some aspect of interface	

Compare two or more designs on a measurable aspect	

Contribute to theory of Human-Computer Interaction	

Approaches	

Collect and analyze user events that occur in natural use ���
Controlled experiments	

Examples of measures	

Time to complete a task, Average number of errors on a task, Users’
ratings of an interface* 	

* You could argue that users’ perception of speed, error rates etc is
more important than their actual values	

3/5/12	

18	

Comparison	

Qualitative studies	

Faster, less expensive à esp. useful in early stages of design
cycle	

	

Quantitative studies	

Reliable, repeatable result à scientific method	

Best studies produce generalizable results	

	

	

Pilot User Study Assignment (after midterm)	

You will conduct a qualitative study	

We don’t have enough time or subjects for quantitative studies	

But you should do a little quantitative analysis	

What are your measures?	

Compute summary statistics (mean, stdev)	

Do you have independent, dependent, and control variables?	

	

	

3/5/12	

19	

Designing Controlled Experiments	

Steps in Designing an Experiment	

1.  State a lucid, testable hypothesis	

2.  Identify variables ���

(independent, dependent, control, random)	

3.  Design the experimental protocol	

4.  Choose user population	

5.  Apply for human subjects protocol review	

6.  Run pilot studies	

7.  Run the experiment	

8.  Perform statistical analysis	

9.  Draw conclusions	

	

3/5/12	

20	

Example: Bubble Cursor	

Lucid, Testable Hypothesis	

H1: Users will acquire targets faster with the Bubble
cursor (their movement time will be lower) than with
the normal cursor.	

	

H2: Users will have a lower error rate with the Bubble
cursor than with the normal cursor.	

Other hypotheses?	

3/5/12	

21	

Experiment Design	

Testable hypothesis	

Precise statement of expected outcome	

	

Independent variables (factors)	

Attributes we manipulate/vary in each condition	

Levels – values for independent variables	

	

Dependent variables (response variables)	

Outcome of experiment (measurements)	

Usually measure user performance	

	

	

	

	

Experiment Design	

Control variables	

Attributes that will be fixed throughout experiment	

Confound – attribute that varied and was not accounted for	

Problem: Confound rather than IV could have caused change in DVs	

Confounds make it difficult/impossible to draw conclusions	

	

Random variables	

Attributes that are randomly sampled	

Increases generalizability	

	

3/5/12	

22	

Variable Types	

Nominal: categories with labels, no order	

	

Ordinal: categories with rank order	

	

Continuous: ���
interval (w/o zero point), ratio (w/ zero point) 	

Common Metrics in HCI	

Performance metrics:	

•  Task success (binary or multi-level)	

•  Task completion time	

•  Errors (slips, mistakes) per task	

•  Efficiency (cognitive & physical effort)	

•  Learnability	

	

Satisfaction metrics:	

•  Self-report on ease of use, frustration, etc.	

3/5/12	

23	

Performance Metric: Errors	

stcsig.org	
 media.tbo.com	
 /	
 AP	

Performance Metric: Lostness	

Smith 1996:	

N: # of different
pages visited	

S: # of total pages
visited, incl. revisits	

R: minimum # of
pages to accomplish
task	

	

Lostness = ���
sqrt((N/S-1)2+(R/N-1)2)	

Smith 1996	

3/5/12	

24	

Satisfaction Metric: Likert Scales	

Respondents rate
their level of
agreement to a
statement	

	

	

	

	

Likert data is ordinal,
not continuous
(matters for analysis)!	

	

	

“Overall, I am satisfied with the ease of
completing the tasks in this scenario”	

	

1: Strongly Disagree	

2: Disagree	

3: Neither agree nor disagree	

4: Agree	

5: Strongly agree	

Variables for the Bubble Cursor	

Independent variables	

Dependent variables	

Control variables	

Random variables	

3/5/12	

25	

Variables	

Independent variables	

Cursor type (bubble, normal, area?)	

Target Distance	

Target Width (Effective vs. Actual?)	

	

Dependent variables	

Movement Time	

Error Rate	

User Satisfaction	

	

Control variables	

Color scheme, input device, ���
screen size	

	

Random variables	

Location, environment, 	

Attributes of subjects	

Age, gender, handedness, …	

Conducting studies online	

vs. in person strongly influences	

which variables are controlled	

and which are random.	

Goals	

Internal validity	

Manipulation of IV is cause of change in DV	

Requires eliminating confounding variables (turn them into IVs or RVs)	

Requires that experiment is replicable	

	

	

	

	

External validity 	

Results are generalizable to other experimental settings	

Ecological validity – results generalizable to real-world settings	

	

	

	

	

	

Confidence in results 	

Statistics	

3/5/12	

26	

Experimental Protocol	

What is the task? (must reflect hypothesis!)	

What are all the combinations of conditions?	

How often to repeat each combination of conditions?	

Between subjects or within subjects	

Avoid bias (instructions, ordering, …)	

	

Number of Conditions	

Consider all combinations to isolate effects of each IV
(factorial design)	

(3 cursor types) * (3 distances) * (3 widths) = 27 combinations	

	

	

	

Adding levels or factors can yield lots of combinations!	

3/5/12	

27	

Reducing Num. of Conditions	

Vary only one independent variable ���
leaving others fixed 	

	

Problem: ?	

Reducing Num. of Conditions	

Vary only one independent variable ���
leaving others fixed 	

	

Problem: Will miss effects of interactions	

3/5/12	

28	

Other Reduction Strategies	

Run a few independent variables at a time 	

If strong effect, include variable in future studies	

Otherwise pick fixed control value for it	

	

Fractional factorial design	

Procedures for choosing subset of independent variables to
vary in each experiment	

	

	

	

	

Choosing Subjects	

Pick balanced sample reflecting intended user population	

Novices, experts	

Age group	

Sex	

….	

	

Example	

12 non-colorblind right-handed adults (male & female)	

	

Population group can also be an IV or a controlled variable	

What is the disadvantage of making population a controlled var?	

	

