

Assignments

Due Today: Group Video Prototype

New Assignment: Test Low-Fi Prototype with 3 users. You have I week – make it short and sweet

Plan Through Midterm

Today 3/5: Threads & Designing Usability Studies

Wednesday 3/7: Statistics & Analyzing Study Data

Monday 3/12: Midterm Review Due: Lo-fi test with three users

Wednesday 3/14: In-class Midterm

Threading in User Interfaces						

Pros and Cons

Why use threads?

Useful model of concurrent execution, both on single processors (time-division multiplexing) and on multi processor/multi-core systems

Threads are relatively cheap to create, versatile because of shared memory

Why wouldn't one use threads?

Complicated programming model. Multithreaded programming is one of the biggest productivity killers of all time

(locks, semaphores, monitors, mutexes, signals, spawn, fork, join,...)

"After a long and careful analysis the results are clear: 11 out of 10 people can't handle threads."

— Todd Hoff

Usability Testing Methods						

"Discount Usability" Techniques

Heuristic Evaluation

Assess interface based on a predetermined list of criteria

Cognitive Walkthroughs

Put yourself in the shoes of a user Like a code walkthrough

Other, non-inspection techniques are on the rise e.g., online remote experiments with Mechanical Turk

Cognitive Walkthrough

Given an interface prototype or specification, need:

- Write detailed task with a concrete goal, motivated by a scenario
- Write action sequence required to complete the task

Ask the following questions for each step:

- Will the users know what to do?
- Will the user notice that the correct action is available?
- Will the user interpret the application feedback correctly?

Record: what would cause problems, and why?

From: Preece, Rogers, Sharp – Interaction Design

Empirical Assessment: Qualitative

Qualitative: What we've been doing so far

Contextual Inquiry: try to understand user's tasks and conceptual model

Usability Studies: look for critical incidents in interface

Qualitative methods help us:

Understand what is going on Look for problems Roughly evaluate usability of interface

Empirical: Quantitative Studies

Quantitative

Use to reliably measure some aspect of interface Compare two or more designs on a measurable aspect Contribute to theory of Human-Computer Interaction

Approaches

Collect and analyze user events that occur in natural use Controlled experiments

Examples of measures

Time to complete a task, Average number of errors on a task, Users' ratings of an interface $\!\!\!\!\!*$

*You could argue that users' perception of speed, error rates etc is more important than their actual values

Comparison

Qualitative studies

Faster, less expensive \rightarrow esp. useful in early stages of design cycle

Quantitative studies

Reliable, repeatable result \rightarrow scientific method Best studies produce generalizable results

<section-header><section-header><section-header><section-header><section-header><text><text><text><text>

Example: Bubble Cursor

The Bubble Cursor: Enhancing Target Acquisition by Dynamic Resizing of the Cursor's Activation Area

Tovi Grossman

Ravin Balakrishnan

Dynamic Graphics Project Lab Department of Computer Science University of Toronto www.dgp.toronto.edu

Lucid, Testable Hypothesis HI: Users will acquire targets faster with the Bubble cursor (their movement time will be lower) than with the normal cursor. H2: Users will have a lower error rate with the Bubble cursor than with the normal cursor. Other hypotheses?

Experiment Design

Testable hypothesis Precise statement of expected outcome

Independent variables (factors)

Attributes we manipulate/vary in each condition Levels – values for independent variables

Dependent variables (response variables)

Outcome of experiment (measurements) Usually measure user performance

Experiment Design

Control variables

Attributes that will be fixed throughout experiment Confound – attribute that varied and was not accounted for Problem: Confound rather than IV could have caused change in DVs Confounds make it difficult/impossible to draw conclusions

Random variables

Attributes that are randomly sampled Increases generalizability

Goals

Internal validity

Manipulation of IV is cause of change in DV

Requires eliminating confounding variables (turn them into IVs or RVs) Requires that experiment is replicable

External validity

Results are generalizable to other experimental settings **Ecological validity** – results generalizable to real-world settings

Confidence in results

Statistics

Experimental Protocol

What is the task? (must reflect hypothesis!)What are all the combinations of conditions?How often to repeat each combination of conditions?Between subjects or within subjectsAvoid bias (instructions, ordering, ...)

Number of Conditions

Consider all combinations to isolate effects of each IV (factorial design)

(3 cursor types) * (3 distances) * (3 widths) = 27 combinations

Adding levels or factors can yield lots of combinations!

Reducing Num. of Conditions

Vary only one independent variable leaving others fixed

Problem: ?

Reducing Num. of Conditions Vary only one independent variable leaving others fixed Problem: Will miss effects of interactions

