CS 160: User Interface Design

Threads, Usability Testing 03/05/12

Microsoft Kinect on a shopping cart
http://www.youtube.com/watch?v=VtXgUyemcEE&feature=player_embedded&v=16GiO8EYVpE
Assignments

Due Today:
Group Video Prototype

New Assignment:
Test Low-Fi Prototype with 3 users. You have 1 week — make it short and sweet

Plan Through Midterm

Today 3/5:
Threads & Designing Usability Studies

Wednesday 3/7:
Statistics & Analyzing Study Data

Monday 3/12:
Midterm Review
Due: Lo-fi test with three users

Wednesday 3/14:
In-class Midterm
Midterm on 3/14

- In class. 75 minutes.
- Closed book & notes.
- Review on Monday 3/12.
- If you are registered with the DSP office and have special needs, we need to see your letter by **this Wednesday, 3/7, 1pm** to make accommodations.

Threading in User Interfaces
What is a thread?

A thread is a partial virtual machine.
Each thread has its own stack (and local variables) but shares its heap with other threads in the same application.

Threads can be independently scheduled by the OS/VM.

Threads vs. Processes

A process is a complete virtual machine with its own stack and heap.

Threads share memory – processes don’t.
Threads can communicate through shared memory, processes need other mechanisms (IPC = inter-process communication).
Pros and Cons

Why use threads?
Useful model of concurrent execution, both on single processors (time-division multiplexing) and on multi processor/multi-core systems
Threads are relatively cheap to create, versatile because of shared memory

Why wouldn’t one use threads?
Complicated programming model. Multithreaded programming is one of the biggest productivity killers of all time
(locks, semaphores, monitors, mutexes, signals, spawn, fork, join,…)

“After a long and careful analysis the results are clear: 11 out of 10 people can’t handle threads.”
— Todd Hoff
Why use multithreading for UIs?

Interactive programs need to respond **quickly** to user input. Direct manipulation assumes that objects onscreen respond to user’s touch/cursor.

Not all code can complete quickly inside an event handler. Examples?
Android Demo: Long-running Task

btnStart.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 // start long computation
 sleep(60000);
 // update UI when done
 txtResult.
 setText("Done.");
 }
});
Event Dispatch Loop

Event Queue
- Queue of input events

Event Loop (runs in dedicated thread)
- Remove next event from queue
- Determine event type
- Find proper component(s)
- Invoke callbacks on components
- Repeat, or wait until event arrives

Component
- Invoked callback method:
 - …compute…
 - …compute…
- Update application state
- Request repaint, if needed

Mouse moved (t_0, x, y)

Long-running operation stopped the event loop!
Android Demo with Threads

btnStart.setOnClickListener(
 new OnClickListener() {
 public void onClick(View v) {
 new Thread(new Runnable() {
 public void run() {
 // start long computation
 Thread.sleep(10000);
 // update UI when done
 txtResult.setText("Done.");
 }
 }).start(); // start new thread
 }
 });

android.view.ViewRoot$CalledFromWrongThreadException:

Only the original thread that created a view hierarchy can touch its views.
Event Dispatch Loop

Event Queue
- Queue of input events

Event Loop (runs in dedicated thread)
- Remove next event from queue
- Determine event type
- Find proper component(s)
- Invoke callbacks on components
- Repeat, or wait until event arrives

Component
- Invoked callback method
- Update application state
- Request repaint, if needed

Mouse moved (t, x, y)

Updating the UI from another thread

All common UI frameworks have a single UI thread
You are only allowed to modify the UI from the main thread.

Two fundamental rules:
Do not block the UI thread
Background threads must not modify the UI

Solution: When worker thread completes, request update back in the UI thread.
How to properly update the UI

Almost all GUI frameworks offer mechanism to notify main thread from another thread

Notification commands are framework dependent

Handler.sendMessage Example

Main thread
- Handle event
- Handle event
- btn.OnClick()
- Handle event
- Handle event
- handleMessage()
- update GUI

Helper thread
- Start new thread
- Long computation
- .
- .
- sendMessage("done")
Android Code: Activity

```java
public class ThreadDemo extends Activity {
    final Handler handler = new Handler()
    {
    public void handleMessage (Message msg) {
        // update UI
        txtResult.setText((String)msg.obj);
    }
    }
}
```

Android Code: Event Handler

```java
public void onClick(View arg0) {
    new Thread(new Runnable() {
        public void run() {
            // long computation…
            Message msg = new Message();
            msg.obj = "Done."
            handler.sendMessage(msg);
        }
    }).start();
}
```
Usability Testing Methods
Iterative Design

- **Design**
 - Brainstorming
 - Task analysis
 - Contextual inquiry

- **Prototype**
 - Low-fi, paper

- **Evaluate**
 - Low-fi testing,
 - Qualitative eval
 - Quantitative eval

Genres of assessment

- **Automated** Usability measures computed by software
- **Inspection** Based on skills, and experience of evaluators
- **Formal** Models and formulas to calculate measures
- **Empirical** Usability assessed by testing with real users
Empirical Testing is Costly

User studies are very expensive – you need to schedule (and normally pay) many subjects.

User studies may take many hours of the evaluation team’s time.

A user test can easily cost $10k’s

“Discount Usability” Techniques

Cheap
No special labs or equipment needed
The more careful you are, the better it gets

Fast
On order of 1 day to apply
(Standard usability testing may take a week)

Easy to use
Can be taught in 2-4 hours
“Discount Usability” Techniques

Heuristic Evaluation
Assess interface based on a predetermined list of criteria

Cognitive Walkthroughs
Put yourself in the shoes of a user
Like a code walkthrough

Other, non-inspection techniques are on the rise
e.g., online remote experiments with Mechanical Turk

Cognitive Walkthrough

Given an interface prototype or specification, need:
• Write detailed task with a concrete goal, motivated by a scenario
• Write action sequence required to complete the task

Ask the following questions for each step:
• Will the users know what to do?
• Will the user notice that the correct action is available?
• Will the user interpret the application feedback correctly?

Record: what would cause problems, and why?

From: Preece, Rogers, Sharp – Interaction Design
Empirical Assessment: Qualitative

Qualitative: What we’ve been doing so far

Contextual Inquiry: Try to understand user’s tasks and conceptual model

Usability Studies: Look for critical incidents in interface

Qualitative methods help us:
Understand what is going on
Look for problems
Roughly evaluate usability of interface

Empirical: Quantitative Studies

Quantitative
Use to reliably measure some aspect of interface
Compare two or more designs on a measurable aspect
Contribute to theory of Human-Computer Interaction

Approaches
Collect and analyze user events that occur in natural use
Controlled experiments

Examples of measures
Time to complete a task, Average number of errors on a task, Users’ ratings of an interface*

You could argue that users’ perception of speed, error rates etc is more important than their actual values
Comparison

Qualitative studies
Faster, less expensive → esp. useful in early stages of design cycle

Quantitative studies
Reliable, repeatable result → scientific method
Best studies produce generalizable results

Pilot User Study Assignment (after midterm)

You will conduct a qualitative study
We don’t have enough time or subjects for quantitative studies
But you should do a little quantitative analysis
What are your measures?
Compute summary statistics (mean, stdev)
Do you have independent, dependent, and control variables?
Steps in Designing an Experiment

1. State a lucid, testable hypothesis
2. Identify variables
 (independent, dependent, control, random)
3. Design the experimental protocol
4. Choose user population
5. Apply for human subjects protocol review
6. Run pilot studies
7. Run the experiment
8. Perform statistical analysis
9. Draw conclusions
Example: Bubble Cursor

The Bubble Cursor: Enhancing Target Acquisition by Dynamic Resizing of the Cursor's Activation Area

Tovi Grossman
Ravin Balakrishnan

Dynamic Graphics Project Lab
Department of Computer Science
University of Toronto
www.dgp.toronto.edu

Lucid, Testable Hypothesis

H1: Users will acquire targets faster with the Bubble cursor (their movement time will be lower) than with the normal cursor.

H2: Users will have a lower error rate with the Bubble cursor than with the normal cursor.

Other hypotheses?
Experiment Design

Testable hypothesis
Precise statement of expected outcome

Independent variables (factors)
Attributes we manipulate/vary in each condition
Levels – values for independent variables

Dependent variables (response variables)
Outcome of experiment (measurements)
Usually measure user performance

Control variables
Attributes that will be fixed throughout experiment
Confound – attribute that varied and was not accounted for
Problem: Confound rather than IV could have caused change in DVs
Confounds make it difficult/impossible to draw conclusions

Random variables
Attributes that are randomly sampled
Increases generalizability
Variable Types

Nominal: categories with labels, no order

Ordinal: categories with rank order

Continuous:
interval (w/o zero point), ratio (w/ zero point)

Common Metrics in HCl

Performance metrics:
• Task success (binary or multi-level)
• Task completion time
• Errors (slips, mistakes) per task
• Efficiency (cognitive & physical effort)
• Learnability

Satisfaction metrics:
• Self-report on ease of use, frustration, etc.
Performance Metric: Errors

Performance Metric: Lostness

Smith 1996:
N: # of different pages visited
S: # of total pages visited, incl. revisits
R: minimum # of pages to accomplish task

Lostness = \sqrt{\left(\frac{N}{S}-1\right)^2 + \left(\frac{R}{N}-1\right)^2}
Satisfaction Metric: Likert Scales

Respondents rate their level of agreement to a statement

Likert data is ordinal, not continuous (matters for analysis)!

“Overall, I am satisfied with the ease of completing the tasks in this scenario”

1: Strongly Disagree
2: Disagree
3: Neither agree nor disagree
4: Agree
5: Strongly agree

Variables for the Bubble Cursor

Independent variables

Dependent variables

Control variables

Random variables
Variables

Independent variables
- Cursor type (bubble, normal, area?)
- Target Distance
- Target Width (Effective vs. Actual?)

Dependent variables
- Movement Time
- Error Rate
- User Satisfaction

Control variables
- Color scheme, input device, screen size

Random variables
- Location, environment, Attributes of subjects
 - Age, gender, handedness, …

Goals

Internal validity
Manipulation of IV is cause of change in DV
Requires eliminating confounding variables (turn them into IVs or RVs)
Requires that experiment is replicable

External validity
Results are generalizable to other experimental settings
Ecological validity – results generalizable to real-world settings

Confidence in results
Statistics
Experimental Protocol

What is the task? (must reflect hypothesis!)
What are all the combinations of conditions?
How often to repeat each combination of conditions?
Between subjects or within subjects
Avoid bias (instructions, ordering, …)

Number of Conditions

Consider all combinations to isolate effects of each IV (factorial design)
(3 cursor types) * (3 distances) * (3 widths) = 27 combinations

Adding levels or factors can yield lots of combinations!
Reducing Num. of Conditions

Vary only one independent variable leaving others fixed

Problem: Will miss effects of interactions
Other Reduction Strategies

Run a few independent variables at a time
If strong effect, include variable in future studies
Otherwise pick fixed control value for it

Fractional factorial design
Procedures for choosing subset of independent variables to vary in each experiment

Choosing Subjects

Pick balanced sample reflecting intended user population
Novices, experts
Age group
Sex
....

Example
12 non-colorblind right-handed adults (male & female)

Population group can also be an IV or a controlled variable
What is the disadvantage of making population a controlled var?