Assignment: Low Fidelity Prototype

Due Mar 15

1. Identify project mission statement
2. Create low-fidelity prototype that supports 3 tasks
 - 1 easy, 1 moderate, 1 difficult task
3. Create a video prototype showing (cameras next class)
 - How it supports the 3 tasks
 - Context in which it will be used (back story)
 - Must include narration
4. Test the prototype with target users
 - No one from this class
 - Not your friends
Review: User Interface Components

Each component is an object with

- Bounding box
- Paint method for drawing itself
- Drawn in the component’s coordinate system
- Callbacks to process input events
 - Mouse clicks, typed keys

Java:

```java
public void paint(Graphics g) {
    g.fillRect(…); // interior
    g.drawString(…); // label
    g.drawRect(…); // outline
}
```

Cocoa:

```cocoa
(void)drawRect:(NSRect)rect
```

Review: Layout & Containment

Principle: Each container is responsible for allocating space and positioning its contents.

Review: Event Dispatch Loop

Event Queue
- Queue of input events

- Mouse moved (x,y)
 - Mouse moved (x,y)

- Event Loop (runs in dedicated thread)
 - Remove next event from queue
 - Determine event type
 - Find proper component(s)
 - Invoke callbacks on components
 - Repeat, or wait until event arrives

Component
- Invoked callback method
- Update application state
- Request repaint, if needed

Review: Model-View-Controller

Architecture for interactive apps

Model: Info the application manipulates
View: Visual display of the model
Controller: Receives input & decides what they do
Topics
- Paper Prototyping
- Video Prototyping
- Wizard of Oz Testing

Why Do We Prototype?
- Get feedback on our design faster
- Saves money
- Experiment with alternative designs
- Fix problems before code is written
- Keep the design centered on the user

Fidelity in Prototyping
- Fidelity refers to the level of detail
 - High fidelity
 - Prototypes look like the final product
 - Low fidelity
 - Artists renditions with many details missing
Hi-Fi Disadvantages

- Distort perceptions of the tester
 - Formal representation indicates “finished” nature
- People comment on color, fonts, and alignment
- Discourages major changes
 - Testers don’t want to change a “finished” design
 - Designers don’t want to lose effort put into creating hi-fi design

Materials

- Large, heavy, white paper (11 x 17)
- 5x8 in. index cards
- Post-it notes
- Tape, stick glue, correction tape
- Pens & markers (colors & sizes)
- Transparencies (including colored)
- Colorforms (toy stores)
- Scissors, X-acto knives, etc.
Interface Elements

Constructing the Prototype

Set a deadline
Don't think too long - build it!

Draw a window frame on large paper

Draw at a large size, but use correct aspect ratio

Put different screen regions on cards
Anything that moves, changes, appears/disappears
Use greeking to indicate text if necessary

Ready response for any user action
e.g., Have those pull-down menus already made

Use photocopier to make many versions
Video Prototyping

Video Brainstorming

Participants act ideas out in front of a video camera
Goal is to create as many new ideas as possible
each should take 2-5 minutes to generate & capture
run standard brainstorming session first for ideas

Advantages
video easier to understand later than notes
participants actively experience interaction & preserve record of the idea

Advantages

Forms of Video Prototypes

Build on paper prototypes
Use existing software & images of real settings
Narration optional (but required for your assignment!)

Explain events while others move images/illustrate interaction

With good storyboards, should be able to create video prototype in 1 hour
Creating a Video Prototype

1) Review field data about users & work practices
2) Review ideas from video brainstorm
3) Create use scenario in words
4) Develop storyboard of each action/event with annotations explaining the scene. Put each element on a card.
5) Shoot a video clip for each storyboard card
 - Avoid editing in the camera – just shoot in storyboard order
 - Hold last frame of a section/shot for 1s
6) Use title cards to separate clips (keep it onscreen for 3s)
 - if you make an error, rewind to last title card & reshoot

Tips & Tricks

Add structure to better explain context
- Begin with a title
- Follow with an “establishing shot”
- Create series of closeup & mid-range shots, interspersed with title cards
- Place a final card with credits at the end

Use colored paper title cards — aids edit/search of video

Stop-motion lets images appear & disappear based on interaction
- e.g., illustrate pop-up menu by recording clip of user pressing button,
 pause camera, add menu, restart camera

Be careful about taking video out of the original design setting for ethical reasons (context matters)

Cluster

Andy Hou and Kevin Chiu: Univ. of Washington

CLUSTER Video Prototype

Andy Hou, Kevin Chiu

Energy Usage Information

Lisa Seeman: Stanford
Higher Fidelity Videos

- RFID Antennas + LED Backlights
- RFID/UPC Reader
- RFID

Cell Phone Music Player
Prototype Example
Wizard of Oz Prototype Testing

Conducting a Test

Three or Four testers (preferable)

Greeter - Puts users at ease & gets data
Facilitator - only team member who speaks
 - Gives instructions & encourages thoughts, opinions
Computer - knows application logic & controls it
 - Always simulates the response, w/o explanation
Observer(s) - Take notes & recommendations

Typical session should be approximately 1 hour
Preparation, the test, debriefing
Conducting a Test (cont.)

Greet
- Get forms filled, assure confidentiality, etc.

Test
- Facilitator explains how test will work
- Performs a simple task
- Facilitator hands written tasks to the user
 - Must be clear & detailed
- Facilitator keeps getting “output” from participant
 - “What are you thinking right now?” “Think aloud”
- Observers record what happens
- Avoid strong reactions, frowning, laughing, impatience – biases the test

Designers should not lead participants
- Let users figure things out themselves as much as possible
- Only answer questions if user remains stuck for a long time

Conducting a Test (cont.)

Debrief
- Fill out post-evaluation questionnaire
- Ask questions about parts you saw problems on
- Gather impressions
- Give thanks

Preparing for a Test

Select your participants
- Understand background of intended users
- Use a questionnaire to get the people you need
- Don’t use friends or family

Prepare scenarios that are
- Typical of the product during actual use
- Make prototype support these (small, yet broad)

Practice running the computer to avoid “bugs”
- You need every menu and dialog for the tasks
- All widgets the user might press
- Remember “help” and “cancel” buttons
- WOZ is different from pre-built/canned functionality

Wizard of Oz Tips

Rehearse your actions
- Make a flowchart which is hidden from the user
- Make list of legal words for a speech interface

Stay “in role”
- You are a computer, and have no common sense, or ability to understand spoken English.

Facilitator can remind user of the rules/think-aloud approach if the user gets stuck
Record Critical Incidents

Critical incidents are any unusual/interesting events

Most of them are usability problems.

They may also be moments when the user
- Got stuck
- Suddenly understood something
- Said “that’s cool” etc.

Using the Results

Update task analysis and rethink design
- Rate severity & ease of fixing problems
- Fix both severe problems & make the easy fixes

Will thinking aloud give the right answers?
- Not always
- If you ask a question, people will always give an answer, even if it has nothing to do with the facts
- Try to avoid leading questions