The Desktop Metaphor…

Tim Mott, mid-1970s, from Moggridge, Designing Interactions, p. 52.
Is this a good idea? When?

How about this? (Implement as Homework!)

http://www.bumptop.com

Jeff Han, Perceptive Pixel

Where do I need to turn?
Instructor: Maneesh Agrawala

Associate Professor in EECS, joined Berkeley in 01/2006

Work in Graphics, HCI, and Visualization

• Visual Interface Design
• Perception & Cognition of Displays

Instructor: Björn Hartmann

Assistant Professor in EECS, joined Berkeley in 01/2010

Research in HCI & Ubiquitous Computing
• User Interface Design Tools
• End-user Programming
• Ubiquitous Computing

GSI: Kenrick Kin

kenrick(at)cs.berkeley.edu
523 Soda Hall
4th year PhD student

Working on: Multitouch interfaces
Awesome
Topics for Today

1. Course Overview
2. Project Description
3. Course Mechanics

This Course

Is about reliably building very good interactive systems.

This semester we focus on mobile applications.

The goal is not to build a working system, but an interactive prototype.

We place emphasis on fieldwork, rapid prototyping and user testing to find the right design and avoid obvious and not-so-obvious mistakes.
Human-Computer Interaction (HCI)

Human
- End-user of program
- Others (friends, collaborators, coworkers)

Computer
- Machine program runs on
- Often split clients & servers

Interaction
- User tells the computer what they want
- Computer communicates results

User Interfaces (UIs)

Part of application that allows
- People to interact with computer
- Computer to communicate results

Can include hardware design
- Buttons, sliders, other sensors

HCI = design, prototyping, implementation & evaluation of UIs

Why Study User Interfaces?

“The results show that in today’s applications, an average of 48% of the code is devoted to the user interface portion. The average time spent on the user interface portion is 4% during the design phase, 50% during the implementation phase, and 37% during the maintenance phase.”

– Myers & Rosson, CHI’92

Why Study User Interfaces?

Major part of work for “real” programs (approx 50%)

You will work on “real” software

Intended for people other than yourself

Bad user interfaces cost

Money, Lives, Votes, …

User interfaces hard to get right

People are unpredictable
Life-Threatening Errors

1995 American Airlines jet crashed into canyon wall, killing all aboard
On approach to Rozo airport in Colombia
Pilot skipped some of the approach procedures
Pilot typed in "R" and system completed full name of airport to Romeo
Guidance system executed turn at low altitude to head for Romeo airport
9 seconds later plane struck canyon wall

Is the pilot to blame?

http://en.wikipedia.org/wiki/American_Airlines_Flight_965

What is Usability?

Ease of learning
Faster the second time and so on...

Recall
Remember how from one session to the next

Productivity
Perform tasks quickly and efficiently

Minimal error rates
If they occur, good feedback so user can recover

High user satisfaction
Confident of success

Who Builds Interfaces?

Ideally a team of specialists
- graphic designers
- interaction/user experience designers
- technical writers
- marketers
- test engineers
- software engineers
- customers

Interface Design Cycle

Design
Prototype
Evaluate

1/27/10
Building Successful Interfaces

1. Task analysis & contextual inquiry
2. Rapid prototyping
3. Evaluation
4. Iteration: Back to 1

Task Analysis & Contextual Inquiry

- Observe existing practices
- Create scenarios of actual use
- Create models to gain insight into work processes

Rapid Prototyping

- Build a mock-up of design (or more!)
- Low fidelity techniques
 - Paper sketches
 - Cut, copy, paste
 - Video segments
- Interactive prototyping tools
 - HTML, Flash, Javascript,
 - Visual Basic, C#, etc.
- UI builders
 - Interface Builder, Visual Studio, NetBeans

Evaluation

- Evaluate analytically (no users)
- Test with real target users
- Low-cost techniques
 - expert evaluation
 - walkthroughs
- Higher cost
 - Controlled usability study
Goals of the Course

Learn to design, prototype, evaluate interfaces
• Discover tasks of prospective users
• Cognitive/perceptual constraints that effect design
• Techniques for evaluating an interface design
• Importance of iterative design for usability
• Technology used to prototype & implement UI code
• How to work together on a team project
• Communicate your results to a group

Many of these will be key aspects of your future jobs

CS160 and the CS Curriculum

Most courses for learning algorithms and technology
Compilers, operating systems, databases, etc.

CS160 concerned with
design, implementation & evaluation
We assume you are comfortable programming
Technology as a tool to evaluate via prototyping

Class Project Overview

Mobile Applications, Developed in Teams

Theme: Mobile Applications

Mobile applications are different:
• Different tasks (local search, not word processing)
• I/O constraints (slow text entry, few pixels)
• Input opportunities: Sensing
 (orientation, acceleration, location, camera)
• Internet connectivity
Course Platform

Apple iPhone / iPod Touch
- We have loaner devices (1 iPod touch per team), or use your own.
- Orchard Mac Lab has development environment installed.
- Coding assignments can be completed in simulator.
- Development path:
 Objective C – 4 assignments to get you up to speed

Inspiration: Design for a Particular User

Inspiration: Location-based Apps

Inspiration: Input
Inspiration: Input

Inspiration: Device-As-Instrument

Inspiration: Device Ecologies

Project Constraints
1. Must be uniquely useful for mobile/handheld devices
 No mobile versions of desktop applications
2. Must have local target users (you’ll talk to them!) but must not exclusively target college students
 No alarm clocks, dining hall apps, homework reminders, etc.
Teams

Each of you will individually propose a project idea
• Fixing something you don’t like or a new idea
• Novelty and creativity will be considered

Groups will form in week 2
• 4 or 5 students to a team
• Work with students with different skills/interests

Cumulative
• Apply several HCI methods to a single interface

Course Mechanics

Office Hours & Sections, Course Wiki, Assignments

Office Hours, Sections

Office Hours
Maneesh: Tuesday 11-noon in 635 Soda Hall (+by appt)
Björn: Wednesday 1-2pm in 629 Soda Hall (+by appt)
Anuj: TBD
Kenrick: TBD

Sections
Tuesday 2-3pm, 405 Soda,
Wednesday 12-1pm, 310 Soda
You must attend to get full class participation credit
No section this week

Reaching Us

Email: cs160@mail.eecs.berkeley.edu

Mail sent here will get the fastest response

Please avoid mailing us directly

Readings

Readings are very important to the class
Make sure you do the reading before class.
Midterm will include topics only covered in readings

Most readings will be posted on wiki
Some require username/password: cs160/cs160Readings

Online reading discussions (ongoing assignment)
You must post one substantial comment per lecture, before class.
We will not accept late comments.
Comments are the major factor in your class participation grade.

Assignments

Four individual programming assignments during first half of semester. Goals:
• Make sure you have the skills to implement your group project
• Individual performance metric
Group project assignments throughout semester

Assessment

The goal of CS160 is to teach you to design and evaluate interfaces.

Specific assessment guidelines will be given in each assignment.

Good communication expected in oral & written presentations.

Groups self-assess participation.
Grading

1. Class & Section participation (10%)
2. Individual Programming Assignments (20%)
3. Project Assignments (50%)
4. Midterm (20%)

Policies

Late Assignments
• Most assignments will be due before class on the due date
• Group assignments will not be accepted late
• Individual assignments lose 33% per day (weekends count)

Cheating (official)
• Will get you an F in the course
• More than once can get you dismissed from Cal

Assignments

Assignment 1: Course Petition
Due Friday, Jan 22, 5pm
Both enrolled and waitlisted students have to submit.
Information will determine admission
Assignment 2: Create Wiki Account

Due Friday, Jan 22, 5pts Use Your Full Name

Assignment 3: Individual Project Idea

Due before class Wednesday, Jan 27; 5pts
Start gathering ideas now! Project should be:
- Exciting to you!
- Creative!
Consider the needs of a well-defined target user group
Include sketches to visualize your ideas
Grading details on the web (20 points total)
Description must be posted to wiki before class on 01/27

Assignment 4: Hello, World!

Due before class
Monday, Feb 1; 5pts
Instructions on wiki. Summary:
Set up XCode development environment and follow Apple tutorial to create a simple Hello World app in the iPhone simulator.
Submit your binary and source to us.
Reading Assignment

The Design Cycle and Brainstorming
The Task-Centered Design Process, Task-Centered User Interface Design, Chap 1, Lewis & Rieman
The Perfect Brainstorm, The Art of Innovation, Kelley
Will need username/password for this one
(cs160/cs160Readings)