CS160, Spring 09
Nicholas Kong

Notes on the gulfs of execution and evaluation from “Direct
Manipulation Interfaces”, Hutchins et al.

Semantic meening Semantic A
Gulf | Distance ::T::: of output Distance Gulf
of A Articulator expression) L 2 Articulato N of ;
Execution r y viatory T gyaluation
o X X
1 Distance Distance Y

form of Tormvon RTTneraroy]
Input output
m expression expression

Inter-
Referential

Figure 6 of Hutchins et al. [1] (shown above) is important and provides a pretty good
distillation of the concepts. The paper can be a little confusing because some examples
blur the lines between semantic and articulatory distances. I think the key contribution of
the paper is to seed thought about what “intuitive” or “obvious” means in an interface.
The exact pigeonholing of certain actions into their little bins is not as important.

As an interaction designer you will need to make decisions that help the user bridge
both gulfs: your interactions will assist in bridging the gulf of execution, whereas your
choice of output or feedback will assist in bridging the gulf of evaluation. However, it can
be difficult to bridge semantic distance in all cases, as the user will inevitably have goals
the designer will not have planned for. Some of the following examples of bridging the gulf
are designer-related, while others are user-related.

Definitions

First, let’s look at a few quotes from the paper:

The gulf of execution is bridged by making the commands and mechanisms
of the system match the thoughts and goals of the user.

In other words, to bridge the gulf of execution, you must translate your ideas or goals into
the language of the input.

The gulf of evaluation is bridged by making the output displays present a
good conceptual model of the system that is readily perceived, interpreted, and
evaluated.

To bridge the gulf of evaluation, you must translate the system’s output language into your
own internal language.



Both of these gulfs are decomposed into two types of distances, semantic and articula-
tory distances.

Semantic distance

Semantic distance reflects the relationship between the user intentions and the
meaning of expressions in the interface languages.

There are two interface “languages”, one for input and one for output. The input language
is comprised of the possible actions and commands; the output language is comprised of the
feedback of the system. To bridge semantic distance, we must therefore provide interface
commands which require little translation to or from the goals of the user.

Hutchins et al. pose two main questions about semantic distance:

1. Is it possible to say what one wants to say in this language [i.e., input or output
language|?

2. Can the things of interest be said concisely [in this language]?

In other words, are the user’s goals expressible in the interface language, and can the user
transform their goals easily into the interface language? For example, assume the user
wants to find the sum of a list of numbers. Let’s look at three cases:

e If the user were to use assembly language, the user would have to deal with the
intricacies of memory register storage and perhaps a limited instruction set. This
results in a large semantic distance; it may take the user some time to discover the
capabilities of the language as well as how to transfer his or her goals into the strict
syntax.

e In a higher level programming language, say, Python, the user need only use a library
function. While concise, the user may still experience a difficulty in determining
whether the sum is possible, if they are not familiar with the math library.

e In a spreadsheet program (Excel, Calc), the user needs to input the data, then
select and click a “Sum” button. If the Sum button is clearly displayed the answer
to the first question comes quickly. “Saying” the expression “sum these numbers” is
also concisely said, as there is a direct mapping from the goal of summing numbers
to the vocabulary (i.e., a button) of the interface.

The paper also emphasizes that there is a difference between “automated behaviour”
(memorization of the system’s interface vocabulary) and semantic distance. In the first
case, the user has adapted to the system to such an extent that their intents are already
formed in terms of the system vocabulary, where in the second the system’s vocabulary
has been designed to match the user’s intent.

e An example of automated behaviour, given in the paper, is how a regular user
of vim (a Unix text editor) had internalized the command to delete a word (dw).
While the user likely still forms the goal “delete this word”, he has internalized
the commands to the extent that the translation between goal and input language
is instantaneous. However, to a beginner user of vim, this translation is far from
obvious; hence, the semantic distance for this operation is still large.



e A system may reduce semantic distance by having its input vocabulary move closer
to the user’s goals. This may be achieved by making use by understanding users’
internal models, many of which come about through metaphor. For example, let’s say
the user wants to move a file from one folder to another in your favorite graphical OS.
This is achievable by drag-and-drop, where the user selects an icon, then physically
moves it (via the mouse) to another folder. The semantic distance is small because
the system has provided an input language which matches the user’s goals.

Articulatory distance

Articulatory distance reflects the relationship between the physical form of an
expression in the interaction language and its meaning.

By “physical form” we mean the actual actions required to invoke an “expression” in the
interaction language.

Let’s take an example with the gulf of execution . Say we have a “Dismiss all” button
in an error dialog. The meaning of this expression in the interaction language is to ignore
all further errors. The physical form of this expression is the requirement of the user to
move the mouse cursor to the button and click. The articulatory distance is the effort
required of the user to connect the meaning of the “dismiss all” button to the physical
action required to depress it. If the button is well designed and visually affords pressing,
the articulatory distance is very small.

On the gulf of evaluation side, the articulatory distance is the translation between
the physical form (e.g., string, picture, sound, etc.) into the meaning of that expression
i terms of the output language. For example, take the example of a mail notifier that
changes color when you have new mail. The articulatory distance is the effort required of
the user to determine what the change in color means.

Examples

ESP game
Gulf of execution

The goal of the player is to match tags of an image with their partner. Let’s split this gulf
up into its component distances.

e Semantic distance. The player’s idea/goal is to input a tag for an image. The
semantic distance is composed of the “translation” of the player’s goal into the in-
terface’s language. So what’s allowed in this interface? We have a textbox in which
we can input a tag. It is apparent that the player must type their chosen tag and
then confirm, either by hitting enter or clicking submit. The textbox affords typing,
so the effort the user needs to exert to connect their goal to the system vocabulary
is small, and thus the semantic distance is small.

e Articulatory distance. There are at least two physical forms of the actions we have
to underatke in the system, namely the input of the tag into the textbox and the
confirmation that the player has matched tags with his/her partner. The user must
type the tag, but can then either press “Enter” or move the mouse cursor and click
“Submit”. I argue that pressing “Enter” has a slightly smaller articulatory distance



than clicking the “Submit” button. Pressing “Enter” to submit is more physically
direct than using the mouse.

Gulf of evaluation

The player wishes to know whether they’ve successfully matched a tag with their partner.
Let’s split this gulf into its component distances as well. Note that in the gulf of evaluation
we pass through the articulatory distance first, then the semantic distance.

e Articulatory distance. The player learns of a successful match via a pop-up notice
that notifies the player of which word was matched on. Thus, the articulatory distance
is very small, in that the string “You matched on jet” directly reveals the system’s
expression “matched words”. The articulatory distance might be somewhat increased
if instead of a pop-up box, the word that the players matched on was highlighted. In
this case, the player would first have to translate the output of a highlighted word into
the system expression “matched word”, which might be less clear than the current
text feedback.

e Semantic distance. The semantic distance is also small, as the goal of the player
is to match words, and the feedback string immediately provides this information to
the user. The semantic distance in turn might be increased if the system instead
returned a string like “Your partner typed ‘jet’.” The user would then need to do
the extra word to determine if they too had typed ‘jet’ and thus matched.

First person shooter - increasing the articulatory distance in the gulf of
execution

One way to increase the articulatory distance in the gulf of execution for a first person
shooter like Halo is to provide an RPG-style menu-selection interface for firing a gun.
That is, the player would have to select the “Action” menu, then the “Fire” menu, then
the “Gun” menu, etc. In most first person shooters, the method to fire a gun is to depress
a single button, in a sense mimicking the action of pulling a trigger. With a menu-based
firing system, articulatory distance increases because there is more of a disconnect between
the physical form and the meaning of “fire a gun”. We have also made the articulatory
language less direct, in this case.

Minimizing semantic distance in the gulf of execution

The question here is how we can go about minimizing semantic distance in the gulf of
execution. This is possible by designing an interface whose vocabulary or language matches
that of the goals/ideas of the user. Let’s say we want to animate a character walking from
point A to point B. In one interface, we may have to manually specify each keyframe, all
the way from point A to point B. The semantic distance is quite large: we need to figure out
how the actions of walking transfer to the smaller motions of a character, as the vocabulary
of the system only allows for changes to individual frames. We could potentially reduce the
semantic and articulatory distances by simply providing a “Walk” button. There would be
virtually no translation from the user’s idea of “make this character walk” to the language
of the interface, thus reducing the semantic distance. Articulatory distance is also reduced
because the physical form of the “walk” vocabulary item (a button displaying “walk”) is



very indicative of its meaning. However, we would lose fine-grained control of the movement
of the character.

Direct Engagement

An important concept from the paper is that of direct engagement. Hutchins et al. have
this to say:

Direct engagement occurs when a user experiences direct interaction with the
objects in a domain. Here there is a feeling of involvement directly with a world
of objects rather than of communication with an intermediary.

Hutchins et al. claim that to achieve direct engagement we must achieve the following:

e Minimize the semantic and articulatory distances, and thus close the gulfs of execu-
tion and evaluation. They also use the term “directness”; the more semantically or
articulatory “direct” an interface is, the smaller the semantic/articulatory distance.

e The input and output languages of the interface should be “inter-referential”, that is,
the output should be able to be used as input. Compare viewing a directory listing
in Windows versus viewing a directory listing using 1s in the command line.

e The system should be responsive.
e The interface should be not be noticed as an interface.

It’s worth thinking about if and how these principles apply to applications you use every
day, or your favorite games.

References

[1] EpwiN L. HurcHiNs, JAMES D. HoLLAN, D. A. N. Direct manipulation interfaces.
Human-Computer Interaction 1 (1985), 311-338.



