

Due Soon

Interactive Prototype (due Apr 6)

- Redesign interface based on lofi feedback
- Create *first* working implementation
 - Can include Wizard of Oz parts where **justified**
 - Can include pre-built (canned) functionality **but only if** heavily justified

In class Presentations (Apr 13, 15, 20)

- 10 min slide presentation (be careful about timing)
- Focus on showing prototype
- Feedback from class (you will need to provide feedback on each presentation on the wiki)

Talk You Should Attend

Bjoern Hartmann

- HCI faculty candidate
- Works on design, implementation and evaluation of authoring tools for UIs

The *d.tools* visual authoring environment enables rapid construction of UI logic.

This evaluation participant used *Exemplar* to control 2D aiming in a game with an accelerometer, and shooting with a flick of a bend sensor.

Mon Apr 13: 1-2:30pm Wozniak Lounge

Why Do We Create Visualizations?

What is Visualization?

Definition [www.oed.com]

- 1. The action or fact of visualizing; the power or process of forming a mental picture or vision of something not actually present to the sight; a picture thus formed.
- 2. The action or process of rendering visible.

Three Primary Functions

Record information

- Photographs, blueprints, ...

Support reasoning about information (analyze)

- Process and calculate
- Reason about data
- Feedback and interaction

Convey information to others (present)

- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data

5	3	RISTORY OF C	-RING DAMAGE O	N SRM FIEL	D JOINTS			
100 MET	SRM	Erosion Depth	Perimeter Affected	View Nominal Dia.	Ler Max	Top ngth Of Erosion	View Total Heat Affected Lengt	Clocking Location (dec)
61A LN Center Field** 61A LN Genter Field** 51C LN Forward Field** 51C Si Center Field (prin)***	22A 15A 15B	None NONE 0.010 0.038	None NONE 154.0 130.0	0.280 0.280 0.280 0.280	1	None NONE 4.25 2.50	None NONE 5.25 58.75	36*56* 338*-18* 163 354
410 RH Forward Field 41C LH Aft Field 41E LH Forward Field	138 11A	0.028 None	110.0 None 217.0	0.280		3.00 None 3.00	None None 14.50	275
STS-2 RH Aft Field	28	0.053	116.0	0.280	3			90
SIM-22 FORMARD FIELD J AND NO SOOT BLONBY, C BLOW BY HISTORY SRM-15 WORST RIME	DTHER	SRM-22 FU	LD JOINTS H	AD NO BL	IS TOR	IN PUTTY	O-RING TO	EMPERATURES
· 2 CASE JOINTS (80°), (11	07	lec	motor		MBT	AMB	O-RING	WIND
O MUCH WORSE VISUALLY TH	HAN -	SRM-22	Dm-+	-	68	36	47	IO MPH
50m 41 5			Dm - 2	-	76	45	52	IO MPH
SRM 22 BLOW-BY			Qm - 3		72.5	40	48	10 m PH
HOE JOINTS (30-4	0)		SRM-I	5	52	44	57	10 mPH
6 A	240		SRM-	22	77	78	75	10 mpH
3KM-18 A. 15. 16A. 18 33A								

	-				
E Mic	crosoft Excel - animal.xls			_101	×
:@) F	File Edit View Insert Format	Tools Data V	Window Help	- 8	×
	A1 - 10				
	A B	C	D	E	
1 1	DName	Body Weight	Brain Weight		<u> </u>
2	1 Lesser Short-tailed Shrew	5	0.14		
3	2 Little Brown Bat	10	0.25		
4	3 Mouse	23	0.3		
5	4 Big Brown Bat	23	0.4		
6	5 Musk Shrew	48	0.33		
7	6 Star Nosed Mole	60	1		
8	7 Eastern American Mole	75	1.2		
9	8 Ground Squirrel	101	4		
10	9 Tree Shrew	104	2.5		
11	10 Golden Harnster	120	1		
12	11 Mole Rate	122	3		
13	12 Galago	200	5		
14	13 Rat	280	1.9		
15	14 Chinchilla	425	6.4		
16	15 Desert Hedgehog	550	2.4		
10	15 ROCK Hyrax (a)	750	12.3		
10	18 Tenrec	/00	3.5		
20	19 Arctic Ground Squirrel	900	2.0		
20	20 African Giant Pouched Rat	1000	5.7		
22	21 Guinea Pig	1040	55		
23	22 Mountain Beaver	1350	81		
24	23 Slow Loris	1400	12.5		
25	24 Genet	1410	17.5		
26	25 Phalanger	1620	11.4		
and the second second		.020			-

Attention

"What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it."

~*Herb Simon* as quoted by Hal Varian Scientific American September 1995

[slide from PARC UIR group]

Data Types

Physical type (model)

- Characterized by storage format
- Characterized by machine operations

Example:

bool, short, int32, float, double, string, ...

Abstract type

- Provide (conceptual) descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy

Example:

nominal, ordinal, quantitative, ..., plants, animals, metazoans, ...

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) - 0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	I.0 (Cold) – I.6 (Warm)
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

Mark Composition
y-axis: temperature (Q) + x-axis: time (Q)
temp over time (Q x Q)

Summary

We create visualizations to

- Record information
- Support reasoning about the information
- Convey information to others

Choose the right mark for your data – Position good for N, O, Q, but Hue best only for N

With careful design it is possible to display many dimensions at once