

LoFi Prototype (due before next lecture)

- Identify project mission statement
- Create low-fidelity prototype that supports 3 tasks
 1 easy, 1 moderate, 1 difficult task
- Create a video prototype showing - How it supports the 3 tasks
 - Context in which is will be used (back story)
- Test the prototype with target users
 - No one from this class
 - Not your friends

- Walkthroughs
 - Put yourself in the shoes of a user
 - Like a code walkthrough
- Action analysis
 - GOMS (add times to formal action analysis)
- Heuristic evaluation
- Low-fi testing
- On-line, remote usability tests

Treating Subjects With Respect

Follow human subject protocols

- Individual test results will be kept confidential
- Users can stop the test at any time
- Users are aware (and understand) the monitoring technique
- Their performance will have not implication on their life
- Records will be made anonymous
 - Videos

Use standard informed consent form

- Especially for quantitative tests
- Be aware of legal requirements

<section-header> Defore the experiment Ave them read and sign the consent form Explain the goal of the experiment In a way accessible to users Be careful about the demand characteristic Participants biased towards experimenter's hypothesis Answer questions During the experiment Stay neutral Never indicate displeasure with users performance

After the experiment

- Debrief users
 - Inform users about the goal of the experiment
- Answer any questions they have

Managing Subjects

Don't waste users time

- Use pilot tests to debug experiments, questionnaires, etc...
- Have everything ready before users show up

Make users comfortable

- Keep a relaxed atmosphere
- Allow for breaks
- Pace tasks correctly
- Stop the test if it becomes too unpleasant

Why Quantitative Studies?

Qualitative Studies

Qualitative: What we've been doing so far

- Contextual Inquiry: try to understand user's tasks and conceptual model
- Usability Studies: look for critical incidents in interface

Qualitative methods help us:

- Understand what is going on
- Look for problems
- Roughly evaluate usability of interface

Quantitative Studies

Quantitative

- Use to reliably measure some aspect of interface
- Compare two or more designs on a measurable aspect

Approaches

- Collect and analyze user events that occur in natural use
 mouse clicks, key presses
- Controlled experiments

Examples of measures

- Time to complete a task
- Average number of errors on a task
- Users' ratings of an interface *
 - Ease of use, elegance, performance, robustness, speed,...

* You could argue that users' perception of speed, error rates etc is more important than their actual values

Steps in Designing an Experiment

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population
- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

Experiment Design

Control variables

- Attributes that will be fixed throughout experiment
- Confound attribute that varied and was not accounted for
 Problem: Confound rather than IV could have caused change in DVs
- Confounds make it difficult/impossible to draw conclusions

Random variables

- Attributes that are randomly sampled
- Increases generalizability

Experimental Protocol

- What is the task?
- What are all the combinations of conditions?
- How often to repeat each combination of conditions?
- Between subjects or within subjects
- Avoid bias (instructions, ordering, ...)

Reducing Num. of Conditions

Vary only one independent variable leaving others fixed

Problem: Will miss effects of interactions

Other Reduction Strategies

Run a few independent variables at a time

- If strong effect, include variable in future studies
- Otherwise pick fixed control value for it

Fractional factorial design

 Procedures for choosing subset of independent variables to vary in each experiment

Choosing Subjects

Pick balanced sample reflecting intended user population

- Novices, experts
- Age group
- Sex
-

Example

– 12 non-colorblind right-handed adults (male & female)

Population group can also be an IV or a controlled variable

- What is the disadvantage of making population a controlled var?
- What are the pros/cons of making population an IV?

Draw Conclusions

What is the scope of the finding?

- Does the experiment reflect real use?
 - External validity
 - Ecological validity
- Are there other parameters at play?
 - Internal validity

Summary

Quantitative evaluations

- Repeatable, reliable evaluation of interface elements
- To control properly, usually limited to low-level issues
 - Menu selection method A faster than method B

Pros/Cons

- Objective measurements
 - Good internal validity ightarrow repeatability
- But, real-world implications may be difficult to foresee
- Significant results doesn't imply real-world importance
 - 3.05s versus 3.00s for menu selection

Next Time

LoFi Prototype Assignment Due

Mid-term Review