
Model View Controller and
Event-Driven UI in Flash/Flex

CS160: User Interfaces
Maneesh Agrawala and Nicholas Kong

http://www.youtube.com/watch?v=WHxQU4RhyLk

- Most heavily used features directly mapped (volume, play/pause)
- Circular movements mapped to linear operations

Review: Metaphor

Review: Metaphor

Review: Cognition
Cognetics

– Ergonomics of the mind
– Study of “engineering scope of our mental abilities”

Cognitive Conscious/Unconscious
– What is the last letter in your first name?

Locus of Attention
– Idea/object/event which you are intently thinking about
– Focus implies volition; locus not always consciously

controlled

Jef Raskin

Review: Modes

Noun-Verb VS Verb-Noun

my.doc

move

Noun-Verb: Select object, then do action
– Emphasizes 'nouns' (visible objects) rather than 'verbs'

(actions)

Advantages
– Closer to real world
– Modeless interaction
– Actions always within context of object

• inappropriate ones can be hidden

– Generic commands
• the same type of action can be performed on the object
• e.g. drag ‘n drop:

Individual Programming Assignment
(due Mar 2)

Design and Implementation Components
– Sketches of 3 alternatives, pick a favorite
– “Discount” user studies in section (Feb 25-26)
– Write up what you learned from the study
– Note how you changed your interface as a result
– Implement user interface

Application area: Project Management/To-Do List
– Items should have start and end date
– Traditional to-do list checklist view
– Timeline view
– Magic lens: http://dohistory.org/diary/exercises/lens/index.html

Individual Programming Assignment
(due Mar 2)

Project Management/To-Do List
Tasks have the following properties:

• Task Name
• Percentage Completed (0-100%)
• Start and End date
• Priority
• List of people assigned to the task
• URL related to the task

Checklist view
• Include checkbox to automatically set completion percentage to 100%
• You should be able to see the completion percentage

Timeline view
Magic lens: http://dohistory.org/diary/exercises/lens/index.html

What is a magic lens?

January February March

Timeline view

Magic Lens

What is a magic lens?

January February March

2/10 - 3/5

Topics

Interactive application programming
– Component Model
– Event-Driven User Interfaces

Model-View-Controller
– Architecture for interactive components
– Why do we need it?
– Changing the display

Interactive Application
Programming

In the beginning…

http://www.cryptonomicon.com/beginning.html

The Xerox Alto (1973)

Event-Driven UIs
Old model (e.g., UNIX shell, DOS)

– Interaction controlled by system, user queried for input
when needed by system

Event-Driven Interfaces (e.g., GUIs)
– Interaction controlled by user
– System waits for user actions and then reacts
– More complicated programming and architecture

Widgets

Widgets
Encapsulation and organization of interactive controls

– Class hierarchy encapsulating widgets
– Top-level “Component” class

• Implements basic bounds management, and event processing

Drawn using underlying 2D graphics library

Input event processing and handling
– Typically mouse and keyboard events

Bounds management (damage/redraw)
– Only redraw areas in need of updating

Java Swing Widgets

Windows Vista Widgets

User Interface Components

• public void paint(Graphics g) {
• g.fillRect(…); // interior
• g.drawString(…); // label
• g.drawRect(…); // outline
• }

Each component is an object with
– Bounding box
– Paint method for drawing itself

• Drawn in the component’s coordinate system

– Callbacks to process input events
• Mouse clicks, typed keys

2D Graphics Model
Widget canvas and coordinate system

– Origin often at top-left, increasing down and to the right
– Units depend on output medium (e.g., pixels for screen)
– Rendering methods

• Draw, fill shapes
• Draw text strings
• Draw images

(0,0)

(0,0)

Composing a User Interface
Label TextArea

Buttons

How might we instruct the computer to generate this layout?

Absolute Layout
Label

TextArea

Buttons

(x=0, y=0, w=350, h=20)

(x=0, y=20, w=350, h=150)

(x=200, y=175, w=45, h=30)
(x=250, y=175, w=85, h=30)

But this is inflexible and doesn’t scale or resize well.

Containment Hierarchy

Component Layout

Border Layout
(direct placement)

NORTH

CENTER

SOUTH
strutssprings

“Struts and Springs”
(simple constraint-

based layout)

• Each container is
responsible for allocating
space for and positioning
its contents

Layout in Flash/Flex

What are Flash and Flex?

Flex
– Framework for web applications
– Implemented using MXML and ActionScript
– Contains library of components
– Quickly prototype interfaces in MXML

Flash (actually, ActionScript)
– What Flash Player runs
– JavaScript-like syntax
– Object-oriented, procedural language
– Use to create custom components, event handling

Flex Widgets

Component Layout in Flex

One Flex Layout

TabNavigator

One Flex Layout (XML)

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute">

<mx:Canvas>
<mx:TabNavigator width="117" height="100">

<mx:Canvas label="Tab 1" width="100%"
height="100%">

<mx:Text x="17" y="21" width="81"
height="25" text="This is tab 1"/>
</mx:Canvas>
<mx:Canvas label="Tab2" width="100%"
height="100%">

<mx:Text x="17" y="21" width="81"
height="25" text="This is tab 2"/>
</mx:Canvas>

</mx:TabNavigator>
</mx:Canvas>

</mx:Application>
TabNavigator

Another Flex Layout

Form

Flex Layout XML

<?xml version="1.0" encoding="utf-8"?>
<mx:Form xmlns:mx="http://www.adobe.com/2006/mxml"
initialize="{init();}">

<mx:FormItem label="Task" required="true">
<mx:TextInput id="taskname" width="200"/>

</mx:FormItem>
<mx:FormItem label="Percentage" required="true">

<mx:TextInput id="percentage" width="200"/>
</mx:FormItem>
<mx:FormItem label="Start Date (MM/DD/YYYY)" required="false">

<mx:TextInput id="startDate" width="200"/>
</mx:FormItem>

<mx:FormItem>
<!-- User clicks Button to trigger validation. -->
<mx:Button id="submit" label="Submit" click="{addTask();}”/>
</mx:FormItem>

</mx:Form>

Roll your own…

Roll your own…
<mx:HBox x="10" y="10" width="100%" scaleX="1.5"
scaleY="1.5">

<mx:VBox height="100%">
<mx:Panel width="100" height="100">
</mx:Panel>
<mx:HDividedBox width="100%">

<mx:Panel width="100" height="100">
</mx:Panel>
<mx:Panel width="100" height="100">
</mx:Panel>

</mx:HDividedBox>
</mx:VBox>
<mx:VBox height="100%">

<mx:HDividedBox width="100%">
<mx:Panel width="100" height="100">
</mx:Panel>
<mx:Panel width="100" height="100">
</mx:Panel>

</mx:HDividedBox>
<mx:Panel width="100" height="100">
</mx:Panel>

</mx:VBox>
</mx:HBox>

Flex Event Handling
• Every component (i.e., objects that

extend UIComponent) dispatch events
corresponding to different interactions.

• Classes that extend EventDispatcher
can dispatch and listen to events, pre-
or user-defined

• Examples events include:
- MouseEvent.MOUSE_MOVE, .CLICK
- KeyboardEvent.KEY_DOWN
- FlexEvent.BUTTON_DOWN

Flex Event Handling
Three phases: Capturing, Targeting, Bubbling

Capturing
Flash Player traverses the display list from root to the
target’s parent for event listeners.

Targeting
The event listener is called on the target.

Bubbling (certain events)
Flash Player traverses the display list from target to
root.

Flex Event Handling

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">

<mx:Canvas scaleX="2" scaleY="2">

<mx:Label x="0" y="0" id="lab" width="140" height="28" fontSize="20"/>
<mx:Button x="0" y="26" label="Click Me!"
buttonDown="lab.text='Hello';" click="lab.text='World!';"
width="140" height="38"/>

</mx:Canvas>

</mx:Application>

There are a few ways to specify event handlers in Flex. The code
below shows inline specification in MXML. You can also use the
addEventListener() function in ActionScript.

Events

Events

User input is modeled as “events” that must be handled
by the system and applications.

Examples?
- Mouse input (and touch, pen, etc.)

- Mouse entered, exited, moved, clicked, dragged
- Inferred events: double-clicks, gestures

- Keyboard (key down, key up)
- Sensor inputs
- Window movement, resizing

Anatomy of an Event
Encapsulates info needed for handlers to react to input

– Event Type (mouse moved, key down, etc)
– Event Source (the input component)
– Timestamp (when did event occur)
– Modifiers (Ctrl, Shift, Alt, etc)
– Event Content

• Mouse: x,y coordinates, button pressed, # clicks
• Keyboard: which key was pressed

Abstracting Events
Level of abstraction may vary. Consider:

- Mouse down vs. double click vs. drag
- Pen move vs. gesture

Callbacks

mouse over

click

drag

onMouseOver(Event e){…}

onMouseClick(Event e){…}

onMouseClick(Event e){…}

onMouseDown(Event e){…}
onMouseUp(Event e){…}

Slider

Event Dispatch Loop

Event Queue
• Queue of input events
Event Queue
• Queue of input events

Event Loop (runs in dedicated thread)

• Remove next event from queue
• Determine event type
• Find proper component(s)
• Invoke callbacks on components
• Repeat, or wait until event arrives

Event Loop (runs in dedicated thread)

• Remove next event from queue
• Determine event type
• Find proper component(s)
• Invoke callbacks on components
• Repeat, or wait until event arrives

Component
• Invoked callback method
• Update application state
• Request repaint, if needed

Component
• Invoked callback method
• Update application state
• Request repaint, if needed

Mouse moved (t0,x,y)

Event Dispatch
Event Queue
• Mouse moved (t0,x,y)
• Mouse pressed (t1,x,y,1)
• Mouse dragged (t2,x,y,1)
• Key typed (t3, ‘F1’)
• …
(queues and dispatches
incoming events in a
dedicated thread)

/* callback for TextArea */
public void mouseMoved(e) {

// process mouse moved event
}

2/23/2009 48

Interactor Tree

Display Screen
Outer Win [black]

Result Win [tan]
Result String

Inner Win [green]

Keypad [Teal]

- button
+ button
0 button

= button

7 8 9

4 5 6

0 + -

1 2 3

=

93.54

ENT

Demo
• Walk through example code for layouts we saw

earlier and the sample code for the first assignment
• Explore ActionScript’s event handling model

