Midterm Review

CS160: User Interfaces
Maneesh Agrawala and Jeffrey Nichols

Upcoming Schedule

• Low-Fi Prototype Assignment due Today
• Midterm on Wednesday March 18
• Interactive Prototype Assignment due April 6
 – First working implementation
 – Can include Wizard of Oz parts where justified
• Interactive Prototype Presentations
 – April 13th, 15th, and 20th
 – Groups randomly assigned to days
Midterm Review

General Information

- Closed book, no cheat sheets, no electronic devices

- Format
 - Short answer and longer answer questions
 - Will involve some recall (We know this is bad interface design)

- Test-taking strategy
 - Questions will not be ordered in difficulty
 - Go through entire test, read questions, answer simple ones first
 - Read questions thoroughly

- Covers all material in lectures, sections and readings
 - Lectures mostly go over material in readings
 - Use lectures as guide to most important aspects of readings
The Design Cycle

1. Acceptance
2. Analysis
3. Definition
4. Ideation
5. Idea selection
6. Implementation
7. Evaluation

Evaluation reveals problems with design. Re-design requires cycling the process.

Design Cycle Over Project Lifespan

1. Acceptance
2. Analysis
3. Definition
4. Ideation
5. Idea selection
6. Implementation
7. Evaluation

Evaluation reveals problems with design. Re-design requires cycling the process.
IDEO’s Brainstorming Rules

1. Sharpen the Focus
2. Playful Rules
3. Number your Ideas
4. Build and Jump
5. The Space Remembers
6. Stretch Your Mental Muscles
7. Get Physical

Aim for quantity
Hope for quality

Games with a Purpose

Games that provide a benefit to the player

Games that solve a problem
Different Varieties of GWAP games

Output-Agreement Inversion-Problem Input-Agreement

Game Structure and Design

Formal Elements
- Players
- Objectives
- Procedures
- Rules
- Resources
- Conflict
- Boundaries
- Outcome

Engaging Elements
- Challenge
- Play
- Premise
- Character
- Story
Task Analysis Questions

1. Who is going to use system?
2. What tasks do they now perform?
3. What tasks are desired?
4. How are the tasks learned?
5. Where are the tasks performed?
6. What's the relationship between user & data?
7. What other tools does the user have?
8. How do users communicate with each other?
9. How often are the tasks performed?
10. What are the time constraints on the tasks?
11. What happens when things go wrong?

What is the purpose of task analysis?

Master-Apprentice Model

Allows user to teach us what they do
- Master (user) works & talks
- We interrupt to ask questions as they go
- Each step reminds master of the next
 - Better than asking user to summarize work habits

What are other models?
How do other models compare?
What is a persona?
Affordances

What is an affordance?

“... the term affordance refers to the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used.

Some affordances obvious
- Knobs afford turning
- Buttons afford pushing
- Glass can be seen through

Some affordances learned
- Glass breaks easily
- Floppy disk
 - Rectangular – can’t insert sideways
 - Tabs prevent backwards insertion

The Design of Everyday Things. 1988. Don Norman
Conceptual Models

- What is the user’s conceptual model?
- How does the user form the conceptual model?
- What if the designers model doesn’t match the user’s model?

Norman’s Design Principles

- Make controls visible
- Make sure mapping is clear
- Provide feedback
Action Cycle

Start Here

- **Goals**
 - Execution
 - Intention to act
 - Sequence of actions
 - Execution of actions
 - Evaluation
 - Evaluation of interpretations
 - Interpreting the perception
 - Perceiving the state of the world

Metaphor

Definition

The transference of the relation between one set of objects to another set for the purpose of brief explanation

Examples?

- When are they effective?
- When are they not effective?
Direct Manipulation

Direct Manipulation
– An interface that behaves as though the interaction was with a real-world object rather than with an abstract system

Central ideas
– Visibility of the objects of interest
– Rapid, reversible, incremental actions
– Manipulation by pointing and moving
– Immediate and continuous feedback

Semantic & Articulatory Distance

Diagram showing the relationship between goals and meaning of expression, with arrows indicating semantic and articulatory distance.
Cognition

Cognetics
 — Ergonomics of the mind
 — What does that mean?

Cognitive Conscious/Unconscious
 — What are they?

Locus of Attention
 — What is it?
 — Why locus rather than focus?

Modes

Definition
 — The same user actions have different effects in different situations
Noun-Verb VS Verb-Noun

Noun-Verb: Select object, then perform action
Verb-Noun: Select action, then perform it on object

What are some examples of these two approaches? What are the pros and cons of these two approaches?

Event Driven Interfaces

Event Loop (runs in dedicated thread)
- Remove next event from queue
- Determine event type
- Find proper component(s)
- Invoke callbacks on components
- Repeat, or wait until event arrives

Component
- Invoked callback method
- Update application state
- Request repaint, if needed

Event Queue
- Queue of input events

Mouse moved (t₀,x,y)
Model-View-Controller

Architecture for interactive apps
- **Model**: Info the application manipulates
- **View**: Visual display of the model
- **Controller**: Receives input & decides what they do

Storyboarding

Series of key frames depicting key steps in reaching a goal
- Can use a pin board for easy rearrangement/editing
- Describe the interaction in context
- Often useful to show user in at least 1st frame (establishing shot)
Fidelity in Prototyping

Fidelity refers to the level of detail

High fidelity
- Prototypes look like the final product

Low fidelity
- Artists renditions with many details missing

Why do we create prototypes?

Testing Prototypes

Observer (or video camera)
User
“Computer”
Interface
Interface elements
Model Human Info Processor

5 Parts
- Perceptual
- Cognitive
- Motor
- Working memory
- Long-term memory

Unified model
- Probably inaccurate
- Predicts perf. well
- Very influential

Review: Memory

Working memory is small
- Temporary storage
 - decay
 - displacement

Long term memory
- Rehearsal
- Relate new to learned material
- Link to existing knowledge
- Attach meaning
 - Make a story

Design interface to facilitate retrieval
- Recognition rather than recall
Review: Pop-Out and Causality

Recall
- Information reproduced from memory

Recognition
- Presentation of info helps retrieve info (helps remember it was seen before)
- Easier because of cues to retrieval
Decision Making

Hick’s Law – cost of making a decision:

\[T = a + b \log_2 (n + 1) \]

- Time depends on number of options
 - Choosing a movie at Blockbuster

Power Law of Practice

Task time on the nth trial follows a power law

\[T_n = T_1 n^{-a} + c \]

where \(a = .4 \), \(c \) = limiting constant

Applies to skilled behavior
- Sensory
- Motor
Fitts’ Law

Hand movement based on series of microcorrections
$X_i = \text{remaining distance after } i\text{th move}$
relative movement accuracy remains constant $\Rightarrow \frac{X_i}{X_{i-1}} = \varepsilon$

Then
$$T = I_m \log_2 \left(\frac{2D}{S} \right)$$

Fitts’ Law

$$T = a + b \log_2 (D / S + 1)$$

a, b = constants (empirically derived)
D = distance
S = size

ID is Index of Difficulty $= \log_2(D/S+1)$

- Models well-rehearsed selection task
- T increases as the distance to the target increases
- T decreases as the size of the target increases
Describe the task using the following operators:

- **K**: pressing a key or a pressing (or releasing) a button
 \[t_K = 0.08 \text{ - } 1.2s \text{ (0.2 good rule of thumb)} \]

- **P**: pointing
 \[t_P = 1.1s \text{ (without button press)} \]

- **H**: Homing (switching device)
 \[t_H = 0.4s \]

- **D(n,l)**: Drawing segmented lines
 \[t_D = 0.9*n + .16*l \]

- **M**: Mentally prepare
 \[t_M = 1.35s \]

- **R(t)**: system response time
 \[t_R = t \]
GOMS Advantages/Disadvantages

Advantages
– Gives qualitative & quantitative measures
– Model explains the results
– Less work than user study – no users!
– Easy to modify when UI is revised

Disadvantages
– Not as easy as other evaluation methods
 • Heuristic evaluation, guidelines, etc.
– Takes lots of time, skill, & effort
– Only works for goal-directed tasks
– Assumes tasks expert performance without error
– Does not address several UI issues,
 • readability, memorizability of icons, commands

Usability Heuristics

“Rules of thumb” describing features of usable systems
– Can be used as design principles
– Can be used to evaluate a design

Example: Minimize users’ memory load

Pros and cons
– Easy and inexpensive
 • Performed by experts
 • No users required
 • Catch many design flaws
– More difficult than it seems
 • Not a simple checklist
 • Cannot assess how well the interface will address user goals
Phases of Heuristic Eval. (1-2)

1) Pre-evaluation training
 – Provide the evaluator with domain knowledge if needed

2) Evaluation
 – Individuals evaluate interface then aggregate results
 • Compare interface elements with heuristics
 – Work in 2 passes
 • First pass: get a feel for flow and scope
 • Second pass: focus on specific elements
 – Each evaluator produces list of problems
 • Explain why with reference to heuristic or other information
 • Be specific and list each problem separately

Phases of Heuristic Eval. (3-4)

3) Severity rating
 – Establishes a ranking between problems
 • Cosmetic, minor, major and catastrophic
 – First rate individually, then as a group

4) Debriefing
 – Discuss outcome with design team
 – Suggest potential solutions
 – Assess how hard things are to fix
Review: Managing Participants

- Testing is distressing
- Treat participants with respect
 - Follow human subjects protocol
 - Obtain informed consent
 - Make sure experiment is ethical

Steps in Designing an Experiment

1. State a lucid, testable hypothesis
2. Identify variables (independent, dependent, control, random)
3. Design the experimental protocol
4. Choose user population
5. Apply for human subjects protocol review
6. Run pilot studies
7. Run the experiment
8. Perform statistical analysis
9. Draw conclusions
Experiment Design

Testable hypothesis
- Precise statement of expected outcome

Factors (independent variables)
- Attributes we manipulate/vary in each condition
- Levels – values for independent variables

Response variables (dependent variables)
- Outcome of experiment (measurements)
- Usually measure user performance
 - Time
 - Errors

Control variables
- Attributes that will be fixed throughout experiment
- Confound – attribute that varied and was not accounted for
 - Problem: Confound rather than IV could have caused change in DVs
- Confounds make it difficult/impossible to draw conclusions

Random variables
- Attributes that are randomly sampled
- Increases generalizability
Between vs. Within Subjects

Between subjects
– Each participant uses one condition
 • +/- Participants cannot compare conditions
 • + Can collect more data for a given condition
 • - Need more participants

Within subjects
– All participants try all conditions
 • + Compare one person across conditions to isolate effects of individual diffs
 • + Requires fewer participants
 • - Fatigue effects
 • - Bias due to ordering/learning effects

Results: Statistical Analysis

Compute central tendencies (descriptive summary statistics) for each independent variable
– Mean
– Standard deviation
Are the Results Meaningful?

Hypothesis testing
- **Hypothesis**: Manipulation of IV effects DV in some way
- **Null hypothesis**: Manipulation of IV has no effect on DV
- Null hypothesis assumed true unless statistics allow us to reject it

Statistical significance (p value)
- Likelihood that results are due to chance variation
- \(p < 0.05 \) usually considered significant (Sometimes \(p < 0.01 \))
 - Means that < 5% chance that null hypothesis is true

Statistical tests
- T-test (1 factor, 2 levels)
- Correlation
- ANOVA (1 factor, > 2 levels, multiple factors)
- MANOVA (> 1 dependent variable)

Next Time

Midterm Exam