Historical Perspective

CS160: User Interfaces
Maneesh Agrawala

Upcoming Schedule

Final Presentation and Report (due May 4)
- Revise interface based on pilot study
- Last chance to finish implementation
- Presentations held in my office on May 4
 - Sign up for 15 min slot next week

- We are planning a project fair for Wed May 6
 - Time is TBD (doodle poll)
Presentation Schedule (May 4)

- 9:00-9:15
- 9:20-9:35
- 9:40-9:55 TGTGSH
- 10:00-10:15 Interface Galactica
- 10:20-10:35 31337
- 10:40-10:55 NGRS
- 11:00-11:15
- 11:20-11:35
- 11:40-11:55
- 1:00-1:15
- 1:20-1:35
- 1:40-1:55
- 2:00-2:15
- 2:20-2:35
- 2:40-2:55

Topics

- Precursors
- 1940's Early Visions
- 1960's Visionary Demos
- 1970's Personal Computing
- 1980's Graphical User Interfaces
- 1990's Mobile and Ubiquitous
Precursors

Astrolabe (Middle Ages)
Convenient interface to complex computation
Mechanical Control & Computation

Jacquard Loom (1804) Babbage Difference Engine (1849)

Hollerith Punch Cards (1890)

Teletype (ca. 1910)

1940’s Early Visions
ENIAC (1943)
World’s first numerical integrator and computer

Harvard Mark I (1944)
55 feet long, 8 feet high, 5 tons
Harvard Mark I (1944)

Hardware
– Physical switches (before microprocessors)
– Paper tape

Uses
– Ballistics calculations
– Simple arithmetic & fixed calculations (before programs)
– 3 seconds to multiply

Adm. Grace Murray Hopper

First programmer of Mark I
Adm. Grace Murray Hopper

First programmer of Mark I

Filed first bug report

Vannevar Bush

• Name rhymes with "Beaver"
• Faculty member MIT
• Coordinated WWII effort with 6000 US scientists
• Social contract for science
 – Federal government funds universities
 – Universities do basic research
 – Research helps economy & national defense

1890 - 1974
As We May Think

- Published in the *Atlantic Monthly* in 1945!
- What will the computer of the future look like?
 - Wearable cameras for photographic records
 - Encyclopedia Brittanica for a nickel
 - Automatic transcripts of speech
 - Memex
 - Trails of discovery
 - Direct capture of nerve impulses

Memex
Memex

- Store all personal books, records, communications
- Items retrieved through indexing, keywords, cross references,...
- Can annotate text with margin notes, comments...
- Can construct a trail through the material and save it
- Acts as an external memory

1960’s Visionary Demos
Context - Computing in 1960s

- Transistor (1948)
- ARPA (1958)
- Timesharing (1950s)
- Terminals and keyboards

- Computers still primarily for scientists and engineers

Sketchpad (1963)

- Ivan E Sutherland’s PhD thesis
- Modern pen-based system supporting
 - CAD design
 - 3D modeling
- Key: Interactivity (real-time computing was non-existent)
Ivan Sutherland (1938 -)

- Established Computer Graphics
- Turing award 1988
- Now a fellow at Sun and until recently a visiting Professor at Berkeley

Doug Engelbart (1925 -)

- Strongly influenced by Bush
 - How would you implement the Memex in 1963?
NLS: oNLine System (1968)

- 1968 Fall Joint Computer Conference (SF)
- Demonstrated NLS to 1000 computer scientists
 - Video screen, chording keyboard, mouse, videoconferencing, hyperlinking, word processing, email,
 - User testing
 - Extremely influential

Chording Keyboard and Mouse

Advantages/Disadvantages?
Doug Engelbart (1925 -)

- Graduate of Berkeley (EE '55)
 - bi-stable gaseous plasma digital devices
- Stanford Research Institute (SRI)
 - Augmentation Research Center 1959
- ARPA funding in 1963
 - Starts work on NLS
- Funding dwindles in 70's, AI↑ HCI↓
- McDonnell-Douglas 1984-1989
 - Worked on open hypertext systems
- Started Bootstrap institute in 1989
- Turing award 1997

1970’s Personal Computing
Altair (1975)

Apple I (1976)
Personal Computers

Apple II 1977

IBM PC 1981

VisiCalc (Bricklin, 1979)
1980’s Graphical User Interfaces

Xerox Star (1982)

Bitmapped display, windows, icons, menus, pointer, desktop, direct manipulation, WYSIWYG …
Designing the Star

Design team developed new methodology
- Task analysis
- Wide range of users
- Usage scenarios
- Decomposition of design:
 - Display and control interface
 - User's conceptual model
- Many prototyping cycles

User centered design

Star → Mac

But the Star was expensive and slow ($25k).

Steve Jobs visits PARC in 1979
- Sees Alto (precursor to Star)
- Lisa ships in 1983 at $10,000,
 - 1-button mouse
 - Menu bar (instead of pop-up menus)
- Fails in marketplace

Macintosh ships in 1984 at $2500
- Most consistent WIMP UI
 - Look and feel guidelines
- Personal computing market changes for good
1990’s Mobile & Ubiquitous

Personal Digital Assistants

Apple Newton (1993)

Palm Pilot (1996)
Mobile Devices

Ubiquitous Computing (1991)

Marc Weiser’s vision
- 100s of computers work together
- Will disappear (invisible)
Ubiquitous Computing (1991)

Context awareness through active badges
 – Privacy and security

Marc Weiser (1952 – 1999)

- Ph.D Univ. of Michigan 1979
- Prof at Univ. of Maryland 79-87
- Joined Xerox PARC 1987
 – Head of Computer Science Lab 1988

Coined term “ubiquitous computing” in 1988
What’s Next?

• Smart rooms, cars & homes
• Wearable computers
• Multimodal and tangible UIs
• Context-aware and “anywhere” interfaces

Summary

• Many seminal ideas came from early years of computing
• Considering the user leads to new ideas
• Innovation happened in bursts
• A modern design process led to GUI (the Xerox Star)
 – User-centered design
• Some appealing kinds of interaction haven’t taken over
 – VR
 – Speech
 – Agents
 – Beware naïve models of human behavior