Visual Information Design

CS160: User Interfaces Maneesh Agrawala

Upcoming Schedule

Pilot User Study (due today before class)

Final Presentation and Report (due Apr 29)

- Revise interface based on pilot study
- Last chance to finish implementation
- Presentations held in my office Apr 29 and May I
 - Sign up for 15 min slot
- We are planning a project fair for Tue May 6 3:30-5pm

Topics

- Why do we create visualizations?
- Data and image
- Estimating magnitude
- Deconstructions

Why Do We Create Visualizations?

What is Visualization?

Definition [www.oed.com]

- 1. The action or fact of visualizing; the power or process of forming a mental picture or vision of something not actually present to the sight; a picture thus formed.
- 2. The action or process of rendering visible.

Why Do We Create Visualizations?

Three Primary Functions

Record information

- Photographs, blueprints, ...

Support reasoning about information (analyze)

- Process and calculate
- Reason about data
- Feedback and interaction

Convey information to others (present)

- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data

Record Information

Drawing: Phases of the Moon

Galileo's drawings of the phases of the moon from 1616 http://galileo.rice.edu/sci/observations/moon.html

Answer Question

Gallop, Bay Horse "Daisy" [Muybridge 1884-86]

Other Recording Instruments

Marey's sphygmograph [from Braun 83]

Support Reasoning

Make a Decision: Challenger

2 of 13 pages of material faxed to NASA by Morton Thiokol [from Tufte 1997]

Make a Decision: Challenger

Visualizations drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

Visualizations drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

Convey Information to Others

:II	O	ry: Mos	st Po	owe	rfı	υl	Brain
	_						
26	Micro	soft Excel - animal.xls					
1	Ele	Edit View Insert Format	Tools Data 1	Mindow Help	-	e x	
	A	▼ f _k ID					
	A	В	C	D	Е		
1	ID	Name	Body Weight	Brain Weight			
2		Lesser Short-tailed Shrew	5	0.14			
3	1	Little Brown Bat	10				
4		Mouse	23				
5		Big Brown Bat	23				
6		Musk Shrew	48				
7		Star Nosed Mole	60				
8		Eastern American Mole	75				
9		Ground Squirrel	101				
10		Tree Shrew	104				
11		Golden Hamster	120				
12		Mole Rate	122				
13		2 Galago	200				
14		Rat	280				
15		Chinchilla	425 550			-	
16		Desert Hedgehog	750				
18		Rock Hyrax (a) European Hedgehog	785				
19		Tenrec	900				
20		Arctic Ground Squirrel	920				
21		African Giant Pouched Rat	1000				
22		Guinea Pig	1040				
23		Mountain Beaver	1350				
24	-	Slow Loris	1400				
25		Genet	1410				
26		Phalanger	1620			-	
-		M animal	[4]		1	M	

The Dragons of Eden [Carl Sagan]

Tell Story: Most Powerful Brain?

The Elements of Graping Data [Cleveland]

Attention

"What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it."

~Herb Simon as quoted by Hal Varian Scientific American September 1995

[slide from PARC UIR group]

Data

Data Types

Physical type (model)

- Characterized by storage format
- Characterized by machine operations

Example

bool, short, int32, float, double, string, ...

Abstract type

- Provide (conceptual) descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy

Example:

nominal, ordinal, quantitative, ..., plants, animals, metazoans, ...

Nominal, Ordinal & Quantitative

- N Nominal (labels)
 - Fruits: Apples, oranges, ...
- O Ordered
 - Quality of meat: Grade A, AA, AAA
- Q Quantitative
 - Real numbers
 - Ordered, with measurable distances, or amounts
 - Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
 - Physical measurement: Length, Mass, Temp, ...
- S. S. Stevens, On the theory of scales of measurements, 1946

From Data Model to Data Type

Data model

- **–** 32.5, 54.0, **-**17.3, ...
- floats

Conceptual model

Temperature

Data type

- Burned vs. Not burned (N)
- Hot, warm, cold (O)
- Continuous range of values (Q)

[based on slide from Munzner]

Image

Jacques Bertin

Visual Variables

- Position
- Size
- Value
- Texture
- Color
- Orientation
- Shape

- Note: Bertin does not consider 3D or time
- Note: Card and Mackinlay extend the number of vars.

Information in Position

- I. A, B, C are distinguishable
- 2. B is between A and C.
- 3. BC is twice as long as AB.
- 4. ∴ Encode quantitative variables (Q)

Information in Color and Value

- Value is perceived as ordered
 - .: Encode ordinal variables (O)

.. Encode continuous variables (Q) [not as well]

- Hue is normally perceived as unordered
 - .. Encode nominal variables (N) using color

Bertins' "Levels of Organization"

Position

Ν 0 Q

Size

Ν 0 Q

Value

0 Ν Q

0

Ν

Ν

Ν

Ν

Texture

Color

Orientation

Shape

N Nominal

O Ordinal

Q Quantitative

Note: Q < O < N

Estimating Magnitude

Detecting Brightness Which is brighter?

Just Noticeable Difference

• JND (Weber's Law)

$$\Delta S = k \frac{\Delta I}{I}$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrete steps

Exponents of Power Law

Sensation	Exponent				
Loudness	0.6				
Brightness	0.33				
Smell	0.55 (Coffee) - 0.6 (Heptane)				
Taste	0.6 (Saccharine) -1.3 (Salt)				
Temperature	1.0 (Cold) – 1.6 (Warm)				
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)				
Duration	1.1				
Pressure	1.1				
Heaviness	1.45				
Electic Shock	3.5				

[Psychophysics of Sensory Function, Stevens 61]

Apparent Magnitude Scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96]

 $S = 0.98A^{0.87}$ [from Flannery 71]

Deconstructions

FilmFinder [Ahlberg 1994]

- x-axis: year of release (quantitative)
- y-axis: popularity (quantitative)
- color: genre (nominal)
- dynamic query filters title (nominal) actor (nominal) actress (nominal) director (nominal) length (quantitative) rating (ordinal)

Interactivity

- Turn visual analysis into a real-time iterative process
- Explore various hypotheses or interests
- Filter to hone in on data of interest
- · Get details on demand

Multi-Dimensional Data

FilmFinder visualizes 3 dimensions

- 2 spatial dimensions
- I color dimension

Can we see more dimensions simultaneously?

Map of the Market [Wattenberg 1998]

http://www.smartmoney.com/marketmap/

Map of the Market [Wattenberg 1998]

- rectangle size: market cap (Q)
- rectangle position: market sector (N), market cap (Q)
- color hue: loss vs. gain (N, O)
- color value: magnitude of loss or gain (Q)