

Treating Subjects With Respect

Follow human subject protocols

- Individual test results will be kept confidential
- Users can stop the test at any time
- Users are aware (and understand) the monitoring technique
- Their performance will have not implication on their life
- Records will be made anonymous
 Videos

Use standard informed consent form

- Especially for quantitative tests
- Be aware of legal requirements

Conducting the Experiment

Before the experiment

- Have them read and sign the consent form
- Explain the goal of the experiment
 - In a way accessible to users
 - Be careful about the demand characteristic
 - Participants biased towards experimenter's hypothesis
- Answer questions

During the experiment

- Stay neutral
- Never indicate displeasure with users performance

After the experiment

- Debrief users
- Inform users about the goal of the experiment
- Answer any questions they have

Managing Subjects

Don't waste users time

- Use pilot tests to debug experiments, questionnaires, etc...
- Have everything ready before users show up

Make users comfortable

- Keep a relaxed atmosphere
- Allow for breaks
- Pace tasks correctly
- Stop the test if it becomes too unpleasant

Ethics: Stanford Prison Experiment

1971 Experiment by Phil Zimbardo at Stanford

- 24 Participants half prisoners, half guards (\$15 a day)
- Basement of Stanford Psychology bldg turned into mock prison
- Guards given batons, military style uniform, mirror glasses,...
- Prisoners wore smocks (no underwear), thong sandals, pantyhose caps

Experiment quickly got out of hand

- Prisoners suffered and accepted sadistic treatment
- Prison became unsanitary/inhospitable
- Prisoner riot put down with use of fire extinguishers
- Guards volunteered to work extra hours

Zimbardo terminated experiment early

- Grad student Christina Maslach objected to experiment
- Important to check protocol with ethics review boards

[from Wikipedia]

Qualitative Studies

Qualitative: What we've been doing so far

- Contextual Inquiry: try to understand user's tasks and conceptual model
- Usability Studies: look for critical incidents in interface

Qualitative methods help us

- Understand what is going on
- Look for problems
- Roughly evaluate usability of interface

Quantitative Studies

Quantitative

- Use to reliably measure some aspect of interface
- Compare two or more designs on a measurable aspect

Approaches

- Collect and analyze user events that occur in natural use
 mouse clicks, key presses
- Controlled experiments

Examples of measures

- Time to complete a task
- Average number of errors on a task
- Users' ratings of an interface *
 - Ease of use, elegance, performance, robustness, speed,...

 \ast You could argue that users' perception of speed, error rates etc is more important than their actual values

Comparison

Qualitative studies

- Faster, less expensive \rightarrow esp. useful in early stages of design cycle
- In real-world design quant. study not always necessary

Quantitative studies

- Reliable, repeatable result \rightarrow scientific method
- Best studies produce generalizable results

Pilot User Study Assignment

You will conduct a qualitative study

- We don't have time or subjects for quantitative studies
- But you should do a little quantitative analysis
 - What are your measures?
 - Compute summary statistics (mean, stdev)
 - Do you have independent, dependent, and control variables?

Steps in Designing an Experiment I. State a lucid, testable hypothesis

- 2. Identify variables (independent, dependent control, random)
- 3. Design the experimental protocol
- 4. Choose user population
- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

Experiment Design

Testable hypothesis

- Precise statement of expected outcome

Factors (independent variables)

- Attributes we manipulate/vary in each condition
- Levels values for independent variables

Response variables (dependent variables)

- Outcome of experiment (measurements)
 - Usually measure user performance
 - Time
 - Errors

Experiment Design

Control variables

- Attributes that will be fixed throughout experiment
- Confound attribute that varied and was not accounted for
 Problem: Confound rather than IV could have caused change in DVs
- Confounds make it difficult/impossible to draw conclusions

Random variables

- Attributes that are randomly sampled
- Increases generalizability

Reducing Num. of Conditions

Vary only one independent variable leaving others fixed

Problem: ?

Reducing Num. of Conditions

Vary only one independent variable leaving others fixed

Problem: Will miss effects of interactions

Other Reduction Strategies

Run a few independent variables at a time

- If strong effect, include variable in future studies
- Otherwise pick fixed control value for it

Fractional factorial design

 Procedures for choosing subset of independent variables to vary in each experiment

Choosing Subjects Pick balanced sample reflecting intended user population Novices, experts Age group Sex ... Example 12 non-colorblind right-handed adults (male & female) Population group can also be an IV or a controlled variable What is the disadvantage of making population a controlled vari? What are the pros/cons of making population an IV?

Between vs. Within Subjects

Between subjects

- Each participant uses one condition
 - +/- Participants cannot compare conditions
 - + Can collect more data for a given condition
 - - Need more participants

Within subjects

- All participants try all conditions
 - · + Compare one person across conditions to isolate effects of individual diffs
 - + Requires fewer participants
 - - Fatigue effects
 - · Bias due to ordering/learning effects

