
1

Model-View-Controller and 
Event Driven UI

CS 160: User Interfaces
Jeffrey Heer

Includes slides based on those of James Landay.

Topics

Interactive application programming
– Component Model
– Event-Driven User Interfaces

Model-View-Controller
– Architecture for interactive components
– Why do we need it?
– Changing the display



2

Interactive Application 
Programming

In the beginning…

http://www.cryptonomicon.com/beginning.html



3

The Xerox Alto (1973)

Event-Driven UIs

Old model (e.g., UNIX shell, DOS)
– Interaction controlled by system, user queried 

for input when needed by system

Event-Driven Interfaces (e.g., GUIs)
– Interaction controlled by user
– System waits for user actions and then reacts
– More complicated programming and 

architecture



4

2D Graphics Model
• Drawing Canvas with coordinate system

– Origin typically at top-left, increasing down and to the right
– Units depend on the output medium (e.g., pixels for screen)

• Graphics Context
– Device-independent drawing abstraction
– Potentially holds state for

• Clipping region
• Color
• Typefaces
• Stroke model
• Coordinate transforms

– Rendering methods
• Draw, fill shapes
• Draw text strings
• Draw images

(0,0)

Component or Widget Model

Encapsulation and organization of interactive 
components (“widgets”)
– Typically using a class hierarchy with a top-level 

“Component” type implementing basic bounds 
management, and event processing

Drawn using underlying 2D graphics library
Input event processing and handling

– Typically mouse and keyboard events

Bounds management (damage/redraw)
– Only redraw areas in need of updating



5

Periodic Table of Motif Widgets

Java Swing Widgets



6

User Interface Components
Label TextArea

Buttons
Each component is a clipped 2D canvas with its own 
coordinate system.

User Interface Components

public void paint(Graphics g) {
g.fillRect(…); // interior
g.drawString(…); // label
g.drawRect(…); // outline

}

• Each component is an object with
– Bounding box
– Paint method for drawing itself

• Drawn in the component’s co-ordinate system

– Callbacks to process input events
• Mouse clicks, typed keys



7

Containment Hierarchy
Window

Panel

TextArea Panel

Button Button

Label

Component Layout
Window

Panel

TextArea Panel

Button Button

Label

Border Layout 
(direct placement)

NORTH

CENTER

SOUTH
strutssprings

“Struts and Springs”
(simple constraint-

based layout)

• Each container is 
responsible for positioning 
its contents



8

Events

User input is modeled as “events” that must 
be handled by the system.

Examples?
– Mouse input 

• Mouse entered, exited, moved, clicked, dragged
• Inferred events: double-clicks, gestures

– Keyboard (key down, key up)
– Window movement, resizing

Anatomy of an Event

An event encapsulates the information 
needed for handlers to react to the input
– Event Type (mouse moved, key down, etc)
– Event Source (the input component)
– Timestamp (when did event occur)
– Modifiers (Ctrl, Shift, Alt, etc)
– Event Content

• Mouse: x,y coordinates, button pressed, # clicks
• Keyboard: which key was pressed



9

Event Dispatch Loop

Event Queue
• Queue of input events

Event Loop (runs in dedicated thread)

• Remove next event from queue
• Determine event type
• Find proper component(s)
• Invoke callbacks on components
• Repeat, or wait until event arrives

Component
• Invoked callback method
• Update application state
• Request repaint, if needed

Mouse moved (t0,x,y)

Event Dispatch

Window

Panel

TextArea Panel

Button Button

Label

Event Queue
• Mouse moved (t0,x,y)
• Mouse pressed (t1,x,y,1) 
• Mouse dragged (t2,x,y,1)
• Key typed (t3, ‘F1’)
• …
(queues and dispatches 
incoming events in a 
dedicated thread)

/* callback for TextArea */
public void mouseMoved(e) {

// process mouse moved event
}



10

Demo

Explore Java’s event handling model
Use debugger to walk into Swing internals
Need source from Sun, provided w/ JDK

Model-View-Controller 
Architecture



11

Model-View-Controller
Architecture for interactive apps

– introduced by Smalltalk developers at PARC

Partitions application in a way that is
– scalable
– maintainable

Model

View

Controller

Example Application

Blue circles: 4
Cardinal squares: 2



12

Model

Information the app is trying to manipulate
Representation of real world objects

– circuit for a CAD program
• logic gates and wires connecting them

– shapes in a drawing program
• geometry and color

Model
View

Controller

View

Implements a visual display of the model
May have multiple views

– e.g., shape view and numerical view

Model
View

Controller



13

Multiple Views

Blue circles: 4
Cardinal squares: 2

View

Implements a visual display of the model
May have multiple views

– e.g., shape view and numerical view
Any time the model is changed, each view must 

be notified so that it can change later
– e.g., adding a new shape

Model
View

Controller



14

Controller

Receives all input events from the user
Decides what they mean and what to do

– communicates with view to determine the objects 
being manipulated (e.g., selection)

– calls model methods to make changes on objects
• model makes change and notifies views to update

Model

View

Controller

Controller

Blue circles: 3
Cardinal squares: 2



15

Controller

Blue circles: 3
Cardinal squares: 2

Controller

Blue circles: 3
Cardinal squares: 2

Click!



16

Controller

Blue circles: 4
Cardinal squares: 2

Relationship of View & 
Controller

“pattern of behavior in response to user events 
(controller issues) is independent of visual 
geometry (view issues)”

Controller must contact view to interpret what user 
events mean (e.g., selection)



17

Combining View & Controller

View and controller are tightly intertwined
– lots of communication between the two

Almost always occur in pairs
– i.e., for each view, need a separate controller

Many architectures combine into a single class

Model

View

Controller

Why MVC?

Combining MVC into one class will not scale
– model may have more than one view

• each is different and needs update when model changes

Separation eases maintenance and extensibility
– easy to add a new view later 
– model info can be extended, but old views still work
– can change a view later, e.g., draw shapes in 3-d 

(recall, view handles selection)
– flexibility of changing input handling when using 

separate controllers



18

Adding Views Later

Blue circles: 4
Cardinal squares: 2

Changing the Display

How do we redraw when shape moves?



19

Moving Cardinal Square

Blue circles: 4
Cardinal squares: 2

Erase w/ Background Color 
and Redraw

Blue circles: 4
Cardinal squares: 2



20

Changing the Display

Erase and redraw
– using background color to erase fails
– drawing shape in new position loses 

ordering
Move in model and then redraw view

– change position of shapes in model
– model keeps shapes in a desired order
– tell all views to redraw themselves in order
– slow for large / complex drawings

• flashing! (can solve w/ double buffering)

Damage / Redraw Method

View informs windowing system of areas that need 
to be updated (i.e., damaged)
– does not redraw them at this time…

Windowing system
– batches updates
– clips them to visible portions of window

Next time waiting for input
– windowing system calls Repaint method

• passes region that needs to be updated



21

Damage old, Change position 
in model, Damage new

Blue circles: 4
Cardinal squares: 2

Event Flow

Creating a new shape



22

Event Flow (cont.)

Assume blue circle selected

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)

Press mouse over tentative position
Windowing system identifies proper window for event
Controller for drawing area gets mouse click event
Checks mode and sees “circle”
Calls models AddCircle method with new position

Blue circles: 0
Cardinal squares: 0



23

Event Flow (cont.)

AddCircle adds new circle to model’s list of objects
Model then notifies list of views of change

– drawing area view and text summary view
Views notifies windowing system of damage

– both views notify WS without making changes yet!
• model may override

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)

Views return to model, which returns to controller
Controller returns to event handler
Event handler notices damage requests pending and 
responds

If one of the views was obscured, it would be ignored 

Blue circles: 0
Cardinal squares: 0



24

Event Flow (cont.)

Event handler calls views’ Repaint methods with damaged 
areas
Views redraw all objects in model that are in damaged area

Blue circles: 1
Cardinal squares: 0

Dragging at Interactive Speeds

Damage old, move, damage new method may be 
too slow
– must take less than ~100 ms to be smooth

Solutions
– don’t draw object, draw an outline (cartoon)

• use XOR to erase fast (problems w/ color)

– save portion of frame buffer before dragging
• draw bitmap rather than redraw the component

– modern hardware often alleviates the problem



25

Review

Event-Driven Interfaces
– Hierarchy of components or widgets
– Input events dispatched to components
– Components process events with callback methods

Model-View-Controller
– Break up a component into

• Model of the data backing the widget(s)
• View determining the look of the widget
• Controller for handling input events

– Provides scalability and extensibility

Looking forward

• Containment hierarchy model is now over 20 
years old, designed in a context of significantly 
less processing and graphics power.

• Dominant model in use today, and still quite 
useful, but in many cases limiting.

• Limitations include:
– Assumes rectangular components
– Limited support for animation
– Level of extensibility (varies by toolkit)

• Suitability for next-generation interfaces?


