Historical Perspective

CS160: User Interfaces
Maneesh Agrawala

Slides based on those of John Canny, Francois Guimbretiere and James Landay

Upcoming Schedule

Interactive Prototype (pick up after class today)
– Mean 89.71
– Stdev 8.45

Final Presentation and Report (due Nov 27)
– Revise interface based on pilot study
– Last chance to finish implementation
– Presentations held in my office Nov 27 and 29
 • Sign up next week
– We are planning a project fair for Dec 4
Review: 3 Functions of Vis.

Record information
– Photographs, blueprints, …

Support reasoning about information (analyze)
– Process and calculate
– Reason about data
– Feedback and interaction

Convey information to others (present)
– Share and persuade
– Collaborate and revise
– Emphasize important aspects of data

Review: Data and Image

N - Nominal (labels)
– Fruits: Apples, oranges, …

O - Ordered
– Quality of meat: Grade A, AA, AAA

Q - Quantitative
– Ordered, with measurable distances, or amounts
– Physical measurement: Length, Mass, Temp, …

Visual Variables
– Position
– Size
– Value
– Texture
– Color
– Orientation
– Shape
Review: Magnitude Estimation

Most accurate:
- Position (common) scale
- Position (non-aligned) scale
- Length
- Slope
- Angle
- Area
- Volume

Least accurate:
- Color hue-saturation-density

Review: Encoding Data

<table>
<thead>
<tr>
<th>Position</th>
<th>N</th>
<th>O</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Value</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Texture</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Color</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Orientation</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Shape</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
</tbody>
</table>

N Nominal
O Ordinal
Q Quantitative

Note: Q < O < N
Napoleon’s March [Minard 1869]

Single Axis Composition

[based on slide from Mackinlay]
Mark Composition

y-axis: temperature (Q)

+ x-axis: time (Q)

= temp over time (Q x Q)

[based on slide from Mackinlay]

Mark Composition

y-axis: longitude (Q)

+ x-axis: latitude (Q)

+ width: army size (Q)

= army position (Q x Q) and army size (Q)

[based on slide from Mackinlay]
- longitude (Q)
- latitude (Q)
- army size (Q)
- temperature (Q)
- time (Q) [based on slide from Mackinlay]

Napoleon’s March [Minard 1869]

- Depicts at least 5 quantitative variables
- Any others?
Summary

We create visualizations to
- Record information
- Support reasoning about the information
- Convey information to others

Choose the right mark for your data
- Position good for N, O, Q, but Hue best only for N
- ...

With careful design it is possible to display many dimensions at once

Topics

- Precursors
- 1940’s Early Visions
- 1960’s Visionary Demos
- 1970’s Personal Computing
- 1980’s Graphical User Interfaces
- 1990’s Mobile and Ubiquitous
Precursors

Astrolabe (Middle Ages)
Convenient interface to complex computation
Mechanical Control & Computation

Jacquard Loom (1804)
Babbage Difference Engine (1849)

Hollerith Punch Cards (1890)

Hollerith Electric Tabulator, US Census Bureau, Washington, DC, 1908,
Teletype (ca. 1910)

1940’s Early Visions
ENIAC (1943)
World’s first numerical integrator and computer

Harvard Mark I (1944)
55 feet long, 8 feet high, 5 tons
Harvard Mark I (1944)

Hardware
- Physical switches (before microprocessors)
- Paper tape

Uses
- Ballistics calculations
- Simple arithmetic & fixed calculations (before programs)
- 3 seconds to multiply

Adm. Grace Murray Hopper

First programmer of Mark I
Adm. Grace Murray Hopper

First programmer of Mark I

Filed first bug report

Vannevar Bush

- Name rhymes with "Beaver"
- Faculty member MIT
- Coordinated WWII effort with 6000 US scientists
- Social contract for science
 - Federal government funds universities
 - Universities do basic research
 - Research helps economy & national defense

1890 - 1974
As We May Think

- Published in the *Atlantic Monthly* in 1945!
- What will the computer of the future look like?
 - Wearable cameras for photographic records
 - Encyclopedia Brittanica for a nickel
 - Automatic transcripts of speech
 - Memex
 - Trails of discovery
 - Direct capture of nerve impulses

Memex
Memex

- Store all personal books, records, communications
- Items retrieved through indexing, keywords, cross references,...
- Can annotate text with margin notes, comments...
- Can construct a trail through the material and save it
- Acts as an external memory

1960’s Visionary Demos
Context - Computing in 1960s

- Transistor (1948)
- ARPA (1958)
- Timesharing (1950s)
- Terminals and keyboards

- Computers still primarily for scientists and engineers

Sketchpad (1963)

- Ivan E Sutherland’s PhD thesis
- Modern pen-based system supporting
 - CAD design
 - 3D modeling
- Key: Interactivity (real-time computing was non-existent)
Ivan Sutherland (1938 -)

- Established Computer Graphics
- Turing award 1988
- Now a fellow at Sun and visiting Professor at Berkeley

Doug Engelbart (1925 -)

Strongly influenced by Bush
- How would you implement the Memex in 1963?
NLS: oNLine System (1968)

- 1968 Fall Joint Computer Conference (SF)
- Demonstrated NLS to 1000 computer scientists
 - Video screen, chording keyboard, mouse, videoconferencing, hyperlinking, word processing, email,
 - User testing
 - Extremely influential

Chording Keyboard and Mouse

Advantages/Disadvantages?
Doug Engelbart (1925 -)

- Graduate of Berkeley (EE ’55)
 - bi-stable gaseous plasma digital devices
- Stanford Research Institute (SRI)
 - Augmentation Research Center 1959
- ARPA funding in 1963
 - Starts work on NLS
- Funding dwindles in 70’s, AI↑ HCI↓
- McDonnell-Douglas 1984-1989
 - Worked on open hypertext systems
- Started Bootstrap institute in 1989
- Turing award 1997

1970’s Personal Computing
Altair (1975)

Apple I (1976)
Personal Computers

Apple II 1977

IBM PC 1981

VisiCalc (Bricklin, 1979)
1980’s Graphical User Interfaces

Xerox Star (1982)

Bitmapped display, windows, icons, menus, pointer, desktop, direct manipulation, WYSIWYG …

Video: 1:11
Designing the Star

Design team developed new methodology
- Task analysis
- Wide range of users
- Usage scenarios
- Decomposition of design:
 - Display and control interface
 - User’s conceptual model
- Many prototyping cycles

User centered design

Star → Mac

But the Star was expensive and slow ($25k).

Steve Jobs visits PARC in 1979
- Sees Alto (precursor to Star)
- Lisa ships in 1983 at $10,000,
 - 1-button mouse
 - Menu bar (instead of pop-up menus)
- Fails in marketplace

Macintosh ships in 1984 at $2500
- Most consistent WIMP UI
 - Look and feel guidelines
- Personal computing market changes for good
1990’s Mobile & Ubiquitous

Personal Digital Assistants

Apple Newton (1993)

Palm Pilot (1996)
Mobile Devices

Ubiquitous Computing (1991)

Marc Weiser's vision
- 100s of computers work together
- Will disappear (invisible)
Ubiquitous Computing (1991)

Context awareness through active badges
– Privacy and security

Marc Weiser (1952 – 1999)

• Ph.D Univ. of Michigan 1979
• Prof at Univ. of Maryland 79-87
• Joined Xerox PARC 1987
 – Head of Computer Science Lab 1988

Coined term “ubiquitous computing” in 1988
What’s Next?

- Smart rooms, cars & homes
- Wearable computers
- Multimodal and tangible UIs
- Context-aware and “anywhere” interfaces

Summary

- Many seminal ideas came from early years of computing
- Considering the user leads to new ideas
- Innovation happened in bursts
- A modern design process led to GUI (the Xerox Star)
 - User-centered design
- Some appealing kinds of interaction haven’t taken over
 - VR
 - Speech
 - Agents
 - Beware naïve models of human behavior
Next Time

Scott Klemmer - Getting a grip on ubiquitous computing through prototyping

- Reflective physical prototyping through integrated design, test, and analysis. UIST 2006. Hartmann et al.