Human Information Processing (KLM, GOMS, Fitts’, Hick’s)

CS160: User Interfaces
Maneesh Agrawala

Slides based on those of John Canny, Francois Guimbretiere and Marti Hearst
Poor layout – easy to vote for wrong person

Punch through design leads to hanging chads

More analysis by Bruce Tognazzini:

Confusion over Palm Beach County ballot

- Poor layout – easy to vote for wrong person
- Punch through design leads to hanging chads
- More analysis by Bruce Tognazzini:

Contextual Inquiry

Assignment handed back after class
- Mean: 51.52
- Stdev: 4.86

Regrading policy
- Resubmit graded printout along with a written statement explaining where you think our grading is wrong
- We will regrade the entire assignment
Upcoming Schedule

Low-Fidelity Prototype (due Oct 11)
- Create low-fidelity prototype that supports 3 tasks
 - 1 easy, 1 moderate, 1 difficult task as found in the last assignment
- Test the prototype with target users
- Hand in printout at beginning of class

Hello World Map (due Oct 13 by midnight)
- Exercise the R3 Paper Application Toolkit

Midterm Exam (next Monday Oct 16)
- Covers all lectures, section and readings through Oct 11
- Closed book, no cheatsheets, no electronic devices
- Next class will include a review

Review: Human Info Processor

5 Parts
- Perceptual
- Cognitive
- Motor (will discuss today)
- Working memory
- Long-term memory

Unified model
- Probably inaccurate
- Predicts perf. well
- Very influential
Review: Pop-Out and Causality

Topics

- Memory
- Decision Making and Learning
- Fitts’ Law
- GOMS and KLM
Memory

Working Memory

Access in chunks
- Task dependent construct
 - 7 +/- 2 (Miller)

Decay
- Content dependant
 - 1 chunk 73 sec
 - 3 chunks 7 sec
- Attention span
 - Interruptions > decay time
Long Term Memory

Very large capacity
 – Semantic encoding

Associative access
 – Fast read: 70ms
 – Expensive write: 10s
 • Association with other ideas in memory - elaboration
 • Can also move from WM to LTM via rehearsal

Context at the time of acquisition key for retrieval

Stage Theory
Stage Theory

Working memory is small
- Temporary storage
 - decay
 - displacement
Maintenance rehearsal
- Rote repetition
- Not enough to learn information well

LTM and Elaboration

Relate new material to already learned material

Link to existing knowledge, categories

Attach meaning
- Make a story
LTM Forgetting

Causes for not remembering an item?
1) Never stored: encoding failure
2) Gone from storage: storage failure
3) Can’t get out of storage: retrieval failure

Interference model of forgetting
– One item reduces ability to retrieve another
– Proactive interference (3)
 • Earlier learning reduces ability to retrieve later info.
– Retroactive interference (3 & 2)
 • Later learning reduces the ability to retrieve earlier info.

Simple Experiment

Volunteer

Start saying colors you see in list of words
 – When slide comes up
 – As fast as you can

Say “done” when finished

Everyone else time it…
Simple Experiment

Do it again

Say “done” when finished
Recognition over Recall

Recall
- Information reproduced from memory

Recognition
- Presentation of info helps retrieve info (helps remember it was seen before)
- Easier because of cues to retrieval
Recall
Write names of the 7 dwarves in Snow White?

Recognition
- Grouchy
- Sneezy
- Smiley
- Sleepy
- Pop
- Grumpy
- Cheerful
- Dopey
- Bashful
- Wheezy
- Doc
- Lazy
- Happy
- Nifty
- Sleepy
Facilitating Retrieval: Cues

Any stimulus that improves retrieval
 – Example: giving hints
 – Other examples in software?
 • icons, labels, menu names, etc.

Anything related to
 – Item or situation where it was learned

Can facilitate memory in any system

We want to design UIs that rely on recognition!

Decision Making and Learning
Hick’s Law

Cost of taking a decision: \(T = a + b \log_2(n + 1) \)

Power Law of Practice

- Task time on the nth trial follows a power law
 \[T_n = T_1 n^{-a} + c \]
 where \(a = .4 \), \(c \) = limiting constant
 - You get faster the more times you do it!

Applies to skilled behavior (sensory & motor)

Does not apply to
 - Knowledge acquisition
 - Improving quality
Problem solving

Manual skills

Writing books
Stages of skill acquisition

Example: Using a manual transmission

Cognitive
- Verbal representation of knowledge

Associative
- Proceduralization
 - Form of chunking

Autonomous
- More and more automated
- Faster and faster
- No cognitive involvement
 - Difficult to describe what to do

Fitts’ Law
Motor Processor

Receive input from the cognitive processor
Execute motor programs
- Pianist: up to 16 finger movements per second
- Point of no-return for muscle action
Hand movement based on series of microcorrections

\[X_i = \text{remaining distance after ith move} \]

relative movement accuracy remains constant \(\frac{X_i}{X_{i-1}} = \varepsilon \)
Fitts’ Law

\[T = a + b \log_2(D/S + 1) \]

- \(a, b\) = constants (empirically derived)
- \(D\) = distance
- \(S\) = size

\(ID\) is Index of Difficulty = \(\log_2(D/S+1)\)

- Models well-rehearsed selection task
- \(T\) increases as the *distance* to the target increases
- \(T\) decreases as the *size* of the target increases

Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

\(a, b\) = constants (empirically derived)
\(D\) = distance
\(S\) = size

Same \(ID\) → Same Difficulty
Considers Distance and Target Size

\[T = a + b \log_2 (D/S + 1) \]

Smaller ID → Easier

Larger ID → Harder
Microsoft Toolbars offer the user the option of displaying a label below each tool. Name at least one reason why labeled tools can be accessed faster. (Assume, for this, that the user knows the tool.)
1. The label becomes part of the target. The target is therefore bigger. Bigger targets, all else being equal, can always be accessed faster, by Fitt's Law

2. When labels are not used, the tool icons crowd together

Tool Matrix Example

You have a palette of tools in a graphics application that consists of a matrix of 16x16-pixel icons laid out as a 2x8 array that lies along the left-hand edge of the screen. Without moving the array from the left-hand side of the screen or changing the size of the icons, what steps can you take to decrease the time necessary to access the average tool?
Tool Matrix Example

1. Change the array to 1x16, so all the tools lie along the edge of the screen.

2. Ensure that the user can click on the very first row of pixels along the edge of the screen to select a tool. There should be no buffer zone.

GOMS and KLM
GOMS (Card et al.)

Describe the user behavior in term of
– Goals
 • Edit manuscript, locate line
– Operators
 • Elementary perceptual, motor or cognitive acts
– Methods
 • Procedure for using operators to accomplish goals
– Selection rules
 • Used if several methods are available for a given goal

Family of methods
– KLM, CMN-GOMS, NGOMSL, CPM-GOMS

Quick Example

Goal (the big picture)
– Go from hotel to the airport

Methods (or subgoals)?
– Walk, take bus, take taxi, rent car, take train

Operators (or specific actions)
– locate bus stop; wait for bus; get on the bus;...

Selection rules (choosing among methods)?
– Example: Walking is cheaper, but tiring and slow
– Example: Taking a bus is complicated abroad
GOMS Output

Execution time
- Add up times from operators
- Assumes experts (mastered the tasks)
- Error free behavior
- Very good rank ordering
- Absolute accuracy ~10-20%

Procedure learning time (NGOMSL only)
- Accurate for relative comparison only
- Doesn’t include time for learning domain knowledge

Using GOMS Analysis

Check that frequent goals can be achieved quickly

Making operator hierarchy is often the value
- Functionality coverage & consistency
 - Does UI contain needed functions?
 - Consistency: are similar tasks performed similarly?
- Operator sequence
 - In what order are individual operations done?
How to do GOMS Analysis

Generate task description
- Pick high-level user **Goal**
- Write **Methods** for reaching Goal - may invoke subgoals
- Write **Methods** for subgoals
 - This is recursive
 - Stops when **Operators** are reached

Evaluate description of task
Apply results to UI
Iterate!

Detailed Task Description

```plaintext
GOAL: EDIT-MANUSCRIPT
  . GOAL: EDIT-UNIT-TASK  repeat until no more unit tasks
  .  . GOAL: ACQUIRE-UNIT-TASK
  .  .  . GET-NEXT-PAGE
  .  .  . GET-NEXT-TASK
  .  .  . GOAL: EXECUTE-UNIT-TASK
  .  .  .  . GOAL: LOCATE-LINE
  .  .  .  .  . [select: USE-QS-METHOD
      USE-LF-METHOD]
  .  .  .  .  . GOAL: MODIFY-TEXT
  .  .  .  .  .  . [select: USE-S-COMMAND
      USE-M-COMMAND]
  .  .  .  .  .  .  . VERIFY-EDIT
```

If at end of manuscript page